61 research outputs found
Low-Level ionizing radiation induces selective killing of HIV-1-infected cells with reversal of cytokine induction using mtor inhibitors
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the “shock and kill” strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells
Association of plasma microRNA expression with age, genetic background and functional traits in dairy cattle
Abstract A number of blood circulating microRNAs (miRNAs) are proven disease biomarkers and have been associated with ageing and longevity in multiple species. However, the role of circulating miRNAs in livestock species has not been fully studied. We hypothesise that plasma miRNA expression profiles are affected by age and genetic background, and associated with health and production traits in dairy cattle. Using PCR arrays, we assessed 306 plasma miRNAs for effects of age (calves vs mature cows) and genetic background (control vs select lines) in 18 animals. We identified miRNAs which were significantly affected by age (26 miRNAs) and genetic line (5 miRNAs). Using RT-qPCR in a larger cow population (n = 73) we successfully validated array data for 12 age-related miRNAs, one genetic line-related miRNA, and utilised expression data to associate their levels in circulation with functional traits in these animals. Plasma miRNA levels were associated with telomere length (ageing/longevity indicator), milk production and composition, milk somatic cell count (mastitis indicator), fertility, lameness, and blood metabolites linked with body energy balance and metabolic stress. In conclusion, circulating miRNAs could provide useful selection markers for dairy cows to help improve health, welfare and production performance
Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop
Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs) generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are their delimiting lipid bilayer membranes. To evaluate research progress on membranes and EVs, the International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who were selected on the basis of submitted applications. The workshop was accompanied by two scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion; technologies and strategies used to study EV membranes; and EV transfer and functional assays. In this ISEV position paper, we synthesize the results of the workshop and the related surveys to outline important outstanding questions about EV membranes and describe areas of consensus. The workshop discussions and survey responses reveal that while much progress has been made in the field, there are still several concepts that divide opinion. Good consensus exists in some areas, including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells. Further research is needed in these key areas, as a better understanding of membrane biology will contribute substantially towards advancing the field of extracellular vesicles.Fil: Russell, Ashley E.. University Johns Hopkins; Estados UnidosFil: Sneider, Alexandra. University Johns Hopkins; Estados UnidosFil: Witwer, Kenneth W.. University Johns Hopkins; Estados UnidosFil: Bergese, Paolo. Università Degli Studi Di Brescia; ItaliaFil: Bhattacharyya, Suvendra N.. Indian Institute of Chemical Biology; IndiaFil: Cocks, Alexander. Cardiff University; Reino UnidoFil: Cocucci, Emanuele. Ohio State University; Estados UnidosFil: Erdbrügger, Uta. University of Virginia; Estados UnidosFil: Falcon Perez, Juan M.. Ikerbasque Basque Foundation for Science; EspañaFil: Freeman, David W.. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Gallagher, Thomas M.. Loyola University Of Chicago; Estados UnidosFil: Hu, Shuaishuai. Technological University Dublin; IrlandaFil: Huang, Yiyao. University Johns Hopkins; Estados Unidos. Southern Medical University; ChinaFil: Jay, Steven M.. University of Maryland; Estados UnidosFil: Kano, Shin-ichi. The University of Alabama at Birmingham School of Medicine; Estados UnidosFil: Lavieu, Gregory. Institut Curie; FranciaFil: Leszczynska, Aleksandra. University of California at San Diego; Estados UnidosFil: Llorente, Alicia M.. Oslo University Hospital; NoruegaFil: Lu, Quan. Harvard University. Harvard School of Public Health; Estados UnidosFil: Mahairaki, Vasiliki. University Johns Hopkins; Estados UnidosFil: Muth, Dillon C.. University Johns Hopkins; Estados UnidosFil: Noren Hooten, Nicole. National Institute On Aging National Institute for Helth ; Estados UnidosFil: Ostrowski, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Prada, Ilaria. Consiglio Nazionale delle Ricerche; ItaliaFil: Sahoo, Susmita. Icahn School of Medicine at Mount Sinai ; Estados UnidosFil: Schøyen, Tine Hiorth. Uit The Arctic University Of Norway; Noruega. University Johns Hopkins; Estados UnidosFil: Sheng, Lifuy. University of Washington. School of Medicine; Estados UnidosFil: Tesch, Deanna. Shaw University; Estados UnidosFil: Van Niel, Guillaume. No especifíca;Fil: Vandenbroucke, Roosmarijn E.. University of Ghent; BélgicaFil: Verweij, Frederik J.. No especifíca;Fil: Villar, Ana V.. Universidad de Cantabria; EspañaFil: Wauben, Marca. University of Utrecht; Países BajosFil: Wehman, Ann M.. Universität Würzburg; AlemaniaFil: Ardavan, Arzhang. Peking University; ; ChinaFil: Carter, David Raul Francisco. Oxford Brookes University; Reino UnidoFil: Vader, Pieter. University Medical Center Utrecht; Países Bajo
Identification of miRNA-103 in the Cellular Fraction of Human Peripheral Blood as a Potential Biomarker for Malignant Mesothelioma – A Pilot Study
Background: To date, no biomarkers with reasonable sensitivity and specificity for the early detection of malignant mesothelioma have been described. The use of microRNAs (miRNAs) as minimally-invasive biomarkers has opened new opportunities for the diagnosis of cancer, primarily because they exhibit tumor-specific expression profiles and have been commonly observed in blood of both cancer patients and healthy controls. The aim of this pilot study was to identify miRNAs in the cellular fraction of human peripheral blood as potential novel biomarkers for the detection of malignant mesothelioma. Methodology/Principal Findings: Using oligonucleotide microarrays for biomarker identification the miRNA levels in the cellular fraction of human peripheral blood of mesothelioma patients and asbestos-exposed controls were analyzed. Using a threefold expression change in combination with a significance level of p,0.05, miR-103 was identified as a potential biomarker for malignant mesothelioma. Quantitative real-time PCR (qRT-PCR) was used for validation of miR-103 in 23 malignant mesothelioma patients, 17 asbestos-exposed controls, and 25 controls from the general population. For discrimination of mesothelioma patients from asbestos-exposed controls a sensitivity of 83 % and a specificity of 71 % were calculated, and for discrimination of mesothelioma patients from the general population a sensitivity of 78 % and a specificity of 76%
MicroRNA Predictors of Longevity in Caenorhabditis elegans
Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical invertebrates in homogenous environments often experience no less variability in lifespan than outbred human populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part epigenetically determined. Such “biomarkers of aging,” genetic or otherwise, nevertheless remain rare. In this work, we sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs, known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of growth/muscle maintenance and of metabolic by-products (“age pigments”) report independently on lifespan, suggesting that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time, mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA “biomarkers of aging” act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs and from other causes, may determine individual lifespan
Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Using SERS Tags to Image the Three-Dimensional Structure of Complex Cell Models
Methods to image complex 3D cell cultures are limited by issues such as fluorophore photobleaching and decomposition, poor excitation light penetration, and lack of complementary techniques to verify the 3D structure. Although it remains insufficiently demonstrated, surface-enhanced Raman scattering (SERS) imaging is a promising tool for the characterization of biological complex systems. To this aim, a controllable 3D cell culture model which spans nearly 1 cm2 in surface footprint is designed. This structure is composed of fibroblasts containing SERS-encoded nanoparticles (i.e., SERS tags), arranged in an alternating layered structure. This \u201csandwich\u201d type structure allows monitoring of the SERS signals in the z-axis and with mm dimensions in the xy-axis. Taking advantage of correlative microscopy techniques such as electron microscopy, it is possible to corroborate nanoparticle positioning and distances in z-depths of up to 150 \ub5m. This study reveals a proof-of-concept method for detailed 3D SERS imaging of a complex, dense 3D cell culture model
- …