2,570 research outputs found

    Postpyloric enteral nutrition in the critically ill child with shock: a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tolerance to enteral nutrition in the critically ill child with shock has not been studied. The purpose of the study was to analyze the characteristics of enteral nutrition and its tolerance in the critically ill child with shock and to compare this with non-shocked patients.</p> <p>Methods</p> <p>A prospective, observational study was performed including critically ill children with shock who received postpyloric enteral nutrition (PEN). The type of nutrition used, its duration, tolerance, and gastrointestinal complications were assessed. The 65 children with shock who received PEN were compared with 461 non-shocked critically ill children who received PEN.</p> <p>Results</p> <p>Sixty-five critically ill children with shock, aged between 21 days and 22 years, received PEN. 75.4% of patients with shock received PEN exclusively. The mean duration of the PEN was 25.2 days and the maximum calorie intake was 79.4 kcal/kg/day. Twenty patients with shock (30.7%) presented gastrointestinal complications, 10 (15.4%) abdominal distension and/or excessive gastric residue, 13 (20%) diarrhoea, 1 necrotising enterocolitis, and 1 duodenal perforation due to the postpyloric tube. The frequency of gastrointestinal complications was significantly higher than in the other 461 critically ill children (9.1%). PEN was suspended due to gastrointestinal complications in 6 patients with shock (9.2%). There were 18 deaths among the patients with shock and PEN (27.7%). In only one patient was the death related to complications of the nutrition.</p> <p>Conclusion</p> <p>Although most critically ill children with shock can tolerate postpyloric enteral nutrition, the incidence of gastrointestinal complications is higher in this group of patients than in other critically ill children.</p

    Quantization of pure gravitational plane waves

    Get PDF
    Pure gravitational plane waves are considered as a special case of spacetimes with two commuting spacelike Killing vector fields. Starting with a midisuperspace that describes this kind of spacetimes, we introduce gauge-fixing and symmetry conditions that remove all non-physical degrees of freedom and ensure that the classical solutions are plane waves. In this way, we arrive at a reduced model with no constraints and whose only degrees of freedom are given by two fields. In a suitable coordinate system, the reduced Hamiltonian that generates the time evolution of this model turns out to vanish, so that all relevant information is contained in the symplectic structure. We calculate this symplectic structure and particularize our discussion to the case of linearly polarized plane waves. The reduced phase space can then be described by an infinite set of annihilation and creation like variables. We finally quantize the linearly polarized model by introducing a Fock representation for these variables.Comment: 11 pages, Revtex, no figure

    Characterization of multiple sclerosis lesions with distinct clinical correlates through quantitative diffusion MRI

    Get PDF
    Diffusion magnetic resonance imaging can reveal quantitative information about the tissue changes in multiple sclerosis. The recently developed multi-compartment spherical mean technique can map different microscopic properties based only on local diffusion signals, and it may provide specific information on the underlying microstructural modifications that arise in multiple sclerosis. Given that the lesions in multiple sclerosis may reflect different degrees of damage, we hypothesized that quantitative diffusion maps may help characterize the severity of lesions "in vivo" and correlate these to an individual's clinical profile. We evaluated this in a cohort of 59 multiple sclerosis patients (62% female, mean age 44.7 years), for whom demographic and disease information was obtained, and who underwent a comprehensive physical and cognitive evaluation. The magnetic resonance imaging protocol included conventional sequences to define focal lesions, and multi-shell diffusion imaging was used with b-values of 1000, 2000 and 3000 s/mm2 in 180 encoding directions. Quantitative diffusion properties on a macro- and micro-scale were used to discriminate distinct types of lesions through a k-means clustering algorithm, and the number and volume of those lesion types were correlated with parameters of the disease. The combination of diffusion tensor imaging metrics (fractional anisotropy and radial diffusivity) and multi-compartment spherical mean technique values (microscopic fractional anisotropy and intra-neurite volume fraction) differentiated two type of lesions, with a prediction strength of 0.931. The B-type lesions had larger diffusion changes compared to the A-type lesions, irrespective of their location (P < 0.001). The number of A and B type lesions was similar, although in juxtacortical areas B-type lesions predominated (60%, P < 0.001). Also, the percentage of B-type lesion volume was higher (64%, P < 0.001), indicating that these lesions were larger. The number and volume of B-type lesions was related to the severity of disease evolution, clinical disability and cognitive decline (P = 0.004, Bonferroni correction). Specifically, more and larger B-type lesions were correlated with a worse Multiple Sclerosis Severity Score, cerebellar function and cognitive performance. Thus, by combining several microscopic and macroscopic diffusion properties, the severity of damage within focal lesions can be characterized, further contributing to our understanding of the mechanisms that drive disease evolution. Accordingly, the classification of lesion types has the potential to permit more specific and better-targeted treatment of patients with multiple sclerosis

    Plane waves in quantum gravity: breakdown of the classical spacetime

    Get PDF
    Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and creation like variables. We also consider a simplified version of the model, in which the number of modes is restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to admit an approximate classical description. This result applies as well to the vacuum of the theory.Comment: 11 pages, no figures, version accepted for publication in Phys. Rev.

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore