493 research outputs found

    Mesoscopic models for DNA stretching under force: new results and comparison to experiments

    Full text link
    Single molecule experiments on B-DNA stretching have revealed one or two structural transitions, when increasing the external force. They are characterized by a sudden increase of DNA contour length and a decrease of the bending rigidity. It has been proposed that the first transition, at forces of 60--80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in single stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions these two transitions can overlap, for instance for poly(dA-dT). We derive analytical formula using a coupled discrete worm like chain-Ising model. Our model takes into account bending rigidity, discreteness of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing a connexion with previous fitting parameter values for denaturation profiles. We find that: (i) ssDNA is fitted, using an analytical formula, over a nanoNewton range with only three free parameters, the contour length, the bending modulus and the monomer size; (ii) a surprisingly good fit on this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase length; (iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions; (iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and for long DNAs, which is in excellent agreement with exact transfer matrix calculations; (v) this formula fits perfectly well poly(dG-dC) and λ\lambda-DNA force-extension curves with consistent parameter values; (vi) a coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the B to S one, emerges.Comment: 14 pages, 9 figure

    Designing porous electrode structures for supercapacitors using Quenched MD simulations

    Get PDF
    Recently, supercapacitors with hierarchical porous structured electrodes are gaining a lot of research interest due to their unique qualities such as high power, durability and eco-friendly nature. In this study, porous structured electrodes were generated using quenched molecular dynamics (QMD) simulations, that can provide high energy density by virtue of high porosity. Here, three different quench rates (16, 8 and 4 K/ps) were applied on liquid carbon system to generate different porous structures. It was observed that at 4000 K, the carbon atoms become disorderly bonded and arranges themselves in an ordered hexagonal ring sheets after the completion of quenching process at 300 K. The porous carbon structures were visualized by contour surface mesh. The pore size distribution showed an increase of 62% on decreasing the quench rate from 16 K/ps to 4 K/ps. These light-weight porous carbon structures may also be tested for mechanical and electrical performances, which can have future implications as electrodes for supercapacitor

    Growth Performance and Resource Use Efficiency of Maize in Bihar: An Economic Perspectives

    Get PDF
    The present investigation was undertaken to evaluate the growth in area, production and productivity and resource use efficiency of maize in various agro-climatic zones of Bihar. The growth pattern in production and productivity were also observed to be positive and statistically significant. The trends in area, production and productivity were also observed positive for both the growth models, linear and compound.The resource use efficiency was evaluated zone-wise and for state as whole levels using Data Envelopment Analysis (DEA) technique for the block period 2008-09 to 2010-11. Technical efficiencies at state level in maize production were found to be 64% for kharif maize and 71% in rabi maize. Allocative mean efficiencies for kharif and rabi maize were calculated 68% and 65%, indicating that farmers could reduce costs by 32% and 35% by using optimum proportions of inputs considering it’s prices while selecting it’s quantities. Farmers of zone-II of Bihar are well known for large scale production of rabi maize, but still there exist technical inefficiency by 24% and AE by 9%. The value of cost efficiency (CE) emphasizes the reduction of cost by 30% to produce exiting level of output at least cost. The farmers of zone-III are more technically sound as compared to zone-I, zone-II and thus, even at state level too, the TE was observed 88% and 87% for kharif and rabi maize, respectively but AE is very less as compared to other zones i.e. 52% for rabi maiz

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Association of clinical factors and recent anticancer therapy with COVID-19 severity among patients with cancer: a report from the COVID-19 and Cancer Consortium

    Get PDF
    BACKGROUND: Patients with cancer may be at high risk of adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We analyzed a cohort of patients with cancer and coronavirus 2019 (COVID-19) reported to the COVID-19 and Cancer Consortium (CCC19) to identify prognostic clinical factors, including laboratory measurements and anticancer therapies. PATIENTS AND METHODS: Patients with active or historical cancer and a laboratory-confirmed SARS-CoV-2 diagnosis recorded between 17 March and 18 November 2020 were included. The primary outcome was COVID-19 severity measured on an ordinal scale (uncomplicated, hospitalized, admitted to intensive care unit, mechanically ventilated, died within 30 days). Multivariable regression models included demographics, cancer status, anticancer therapy and timing, COVID-19-directed therapies, and laboratory measurements (among hospitalized patients). RESULTS: A total of 4966 patients were included (median age 66 years, 51% female, 50% non-Hispanic white); 2872 (58%) were hospitalized and 695 (14%) died; 61% had cancer that was present, diagnosed, or treated within the year prior to COVID-19 diagnosis. Older age, male sex, obesity, cardiovascular and pulmonary comorbidities, renal disease, diabetes mellitus, non-Hispanic black race, Hispanic ethnicity, worse Eastern Cooperative Oncology Group performance status, recent cytotoxic chemotherapy, and hematologic malignancy were associated with higher COVID-19 severity. Among hospitalized patients, low or high absolute lymphocyte count; high absolute neutrophil count; low platelet count; abnormal creatinine; troponin; lactate dehydrogenase; and C-reactive protein were associated with higher COVID-19 severity. Patients diagnosed early in the COVID-19 pandemic (January-April 2020) had worse outcomes than those diagnosed later. Specific anticancer therapies (e.g. R-CHOP, platinum combined with etoposide, and DNA methyltransferase inhibitors) were associated with high 30-day all-cause mortality. CONCLUSIONS: Clinical factors (e.g. older age, hematological malignancy, recent chemotherapy) and laboratory measurements were associated with poor outcomes among patients with cancer and COVID-19. Although further studies are needed, caution may be required in utilizing particular anticancer therapies. CLINICAL TRIAL IDENTIFIER: NCT04354701

    Measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections in pp collisions at s=7TeV

    Get PDF
    Differential cross sections as a function of transverse momentum pTpT are presented for the production of ϒ(nS)ϒ(nS) (n = 1, 2, 3) states decaying into a pair of muons. Data corresponding to an integrated luminosity of 4.9View the MathML sourcefb−1 in pp collisions at View the MathML sources=7TeV were collected with the CMS detector at the LHC. The analysis selects events with dimuon rapidity |y|<1.2|y|<1.2 and dimuon transverse momentum in the range View the MathML source10<pT<100GeV. The measurements show a transition from an exponential to a power-law behavior at View the MathML sourcepT≈20GeV for the three ϒ states. Above that transition, the ϒ(3S)ϒ(3S) spectrum is significantly harder than that of the ϒ(1S)ϒ(1S). The ratios of the ϒ(3S)ϒ(3S) and ϒ(2S)ϒ(2S) differential cross sections to the ϒ(1S)ϒ(1S) cross section show a rise as pTpT increases at low pTpT, then become flatter at higher pTpT

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF

    Search for W ' -> tb in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for a Higgs boson decaying into γ*γ→ℓℓγ with low dilepton mass in pp collisions at √s=8 TeV

    Get PDF
    A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair ( ℓℓγ ). The analysis is performed using proton–proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb −1 . The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 12
    corecore