548 research outputs found

    Maternal Malaria and Gravidity Interact to Modify Infant Susceptibility to Malaria

    Get PDF
    BACKGROUND: In endemic areas, placental malaria due to Plasmodium falciparum is most frequent and severe in first-time mothers, and increases the risk of infant mortality in their offspring. Placental malaria may increase the susceptibility of infants to malaria parasitemia, but evidence for this effect is inconclusive. METHODS AND FINDINGS: During 2002–2004, we monitored parasitemia in 453 infants, including 69 who were born to mothers with placental malaria, in a region of northeastern Tanzania where malaria transmission is intense. We used a Cox proportional hazards model to evaluate the time from birth to first parasitemia, and a generalized estimating equations logistic regression model to evaluate risk of any parasitemia throughout the first year of life. Compared with infants whose mothers did not have placental malaria at delivery (β€œPM-negative”), offspring of mothers with placental malaria at delivery (β€œPM-positive”) were 41% more likely to experience their first parasitemia at a younger age (adjusted hazard ratio [AHR] = 1.41, 95% confidence interval [CI] 1.01–1.99). The odds of parasitemia throughout infancy were strongly modified by the interaction between placental malaria and gravidity (p for interaction = 0.008, Type 3 likelihood ratio test). Offspring of PM-negative primigravidae had lower odds of parasitemia during infancy (adjusted odds ratio [AOR] = 0.67, 95% CI 0.50–0.91) than offspring of PM-negative multigravidae, and offspring of PM-positive primigravidae had the lowest odds (AOR = 0.21, 95% CI 0.09–0.47). In contrast, offspring of PM-positive multigravidae had significantly higher odds of parasitemia (AOR = 1.59, 95% CI 1.16–2.17). CONCLUSION: Although parasitemia is more frequent in primigravid than multigravid women, the converse is true in their offspring, especially in offspring of PM-positive women. While placental malaria is known to increase mortality risk for first-born infants, it surprisingly reduced their risk of parasitemia in this study. Placental malaria of multigravidae, on the other hand, is a strong risk factor for parasitemia during infancy, and therefore preventive antimalarial chemotherapy administered to multigravid women close to term may reduce the frequency of parasitemia in their offspring

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H β†’Ξ³ Ξ³, H β†’ Z Zβˆ— β†’4l and H β†’W Wβˆ— β†’lΞ½lΞ½. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fbβˆ’1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon ΞΌ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΞΌΞΌ\mu\mu or eΞΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2Β±3.912.2 \pm 3.9 events and 2.5Β±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying Ο„ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a Ο„ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, Οƒtt-=186Β±13(stat.)Β±20(syst.)Β±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of Ο‡ c1 and Ο‡ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the Ο‡ c1 and Ο‡ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fbβˆ’1 of integrated luminosity. The Ο‡ c states are reconstructed through the radiative decay Ο‡ c β†’ J/ψγ (with J/ψ β†’ ΞΌ + ΞΌ βˆ’) where photons are reconstructed from Ξ³ β†’ e + e βˆ’ conversions. The production rate of the Ο‡ c2 state relative to the Ο‡ c1 state is measured for prompt and non-prompt Ο‡ c as a function of J/ψ transverse momentum. The prompt Ο‡ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from Ο‡ c decays. The fractions of Ο‡ c1 and Ο‡ c2 produced in b-hadron decays are also measured

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39Β pbβˆ’1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40Β GeV to 500Β GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fbβˆ’1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fbβˆ’1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from β‰₯6 to β‰₯9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore