582 research outputs found

    Current constraints on Cosmological Parameters from Microwave Background Anisotropies

    Get PDF
    We compare the latest observations of Cosmic Microwave Background (CMB) Anisotropies with the theoretical predictions of the standard scenario of structure formation. Assuming a primordial power spectrum of adiabatic perturbations we found that the total energy density is constrained to be Ωtot=1.03±0.06\Omega_{tot}=1.03\pm0.06 while the energy density in baryon and Cold Dark Matter (CDM) are Ωbh2=0.021±0.003\Omega_bh^2=0.021\pm0.003 and Ωcdmh2=0.12±0.02\Omega_{cdm}h^2=0.12\pm0.02, (all at 68% C.L.) respectively. The primordial spectrum is consistent with scale invariance, (ns=0.97±0.04n_s=0.97\pm0.04) and the age of the universe is t0=14.6±0.9t_0=14.6\pm0.9 Gyrs. Adding informations from Large Scale Structure and Supernovae, we found a strong evidence for a cosmological constant ΩΛ=0.70−0.05+0.07\Omega_{\Lambda}=0.70_{-0.05}^{+0.07} and a value of the Hubble parameter h=0.69±0.07h=0.69\pm0.07. Restricting this combined analysis to flat universes, we put constraints on possible 'extensions' of the standard scenario. A gravity waves contribution to the quadrupole anisotropy is limited to be r≀0.42r \le 0.42 (95% c.l.). A constant equation of state for the dark energy component is bound to be wQ≀−0.74w_Q \le -0.74 (95% c.l.). We constrain the effective relativistic degrees of freedom NΜ≀6.2N_\nu \leq 6.2 and the neutrino chemical potential −0.01≀Οe≀0.18-0.01 \leq \xi_e \leq 0.18 and âˆŁÎŸÎŒ,Ï„âˆŁâ‰€2.3|\xi_{\mu,\tau}|\leq 2.3 (massless neutrinos).Comment: The status of cosmological parameters before WMAP. In press on Phys. Rev. D., Rapid Communication, 6 pages, 5 figure

    Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability

    Full text link
    In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites' hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturn's system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapke's theory to retrieve the best spectral fits to Saturn's inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    An aggravated trajectory of depression and anxiety co-morbid with hepatitis C: : A 21 to 62 month follow-up study in 61 South Australian outpatients

    Get PDF
    BACKGROUND: This study aimed to explore the course of depression and anxiety in chronic hepatitis C patients. METHODS:   Data were combined from two studies: (1) Hospital Anxiety and Depression Scale (HADS) scores in 395 consecutive Australian outpatients from 2006 to 2010 formed the baseline measurement; and (2) Depression Anxiety Stress Scales (DASS) scores in a survey of a sub-sample of these patients in 2011 formed the follow-up measurement. After converting DASS to HADS scores, changes in symptom scores and rates of case-ness (≄8), and predictors of follow-up symptoms were assessed. RESULTS:   Follow-up data were available for 61 patients (70.5% male) whose age ranged from 24.5 to 74.6 years (M=45.6). The time to follow-up ranged from 20.7 to 61.9 months (M=43.8). Baseline rates of depression (32.8%) and anxiety (44.3%) increased to 62.3% and 67.2%, respectively. These findings were confirmed, independent of the conversion, by comparing baseline HADS and follow-up DASS scores with British community norms. Baseline anxiety and younger age predicted depression, while baseline anxiety, high school non-completion, and single relationship status predicted anxiety. CONCLUSION:  This study demonstrated a worsening trajectory of depression and anxiety. Further controlled and prospective research in a larger sample is required to confirm these findings

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Overcritical states of a superconductor strip in a magnetic environment

    Full text link
    A current-carrying superconducting strip partly penetrated by magnetic flux and surrounded by a bulk magnet of high permeability is considered. Two types of samples are studied: those with critical current controlled by an edge barrier dominating over the pinning, and those with high pinning-mediated critical current masking the edge barrier.It is shown for both cases that the current distribution in a central flux-free part of the strip is strongly affected by the actual shape of the magnetic surroundings. Explicit analytical solutions for the sheet current and self-field distributions are obtained which show that, depending on the geometry, the effect may suppress the total loss-free transport current of the strip or enhance it by orders of magnitude. The effect depends strongly on the shape of the magnet and its distance to the superconductor but only weakly on the magnetic permeability.Comment: 20 pages, 20 figure

    Learning from multimedia and hypermedia

    Get PDF
    Computer-based multimedia and hypermedia resources (e.g., the world wide web) have become one of the primary sources of academic information for a majority of pupils and students. In line with this expansion in the field of education, the scientific study of learning from multimedia and hypermedia has become a very active field of research. In this chapter we provide a short overview with regard to research on learning with multimedia and hypermedia. In two review sections, we describe the educational benefits of multiple representations and of learner control, as these are the two defining characteristics of hypermedia. In a third review section we describe recent scientific trends in the field of multimedia/hypermedia learning. In all three review sections we will point to relevant European work on multimedia/hypermedia carried out within the last 5 years, and often carried out within the Kaleidoscope Network of Excellence. According to the interdisciplinary nature of the field this work might come not only from psychology, but also from technology or pedagogy. Comparing the different research activities on multimedia and hypermedia that have dominated the international scientific discourse in the last decade reveals some important differences. Most important, a gap seems to exist between researchers mainly interested in a “serious” educational use of multimedia/ hypermedia and researchers mainly interested in “serious” experimental research on learning with multimedia/hypermedia. Recent discussions about the pros and cons of “design-based research” or “use-inspired basic research” can be seen as a direct consequence of an increasing awareness of the tensions within these two different cultures of research on education
    • 

    corecore