82 research outputs found

    Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy

    Full text link
    We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately estimated via a converging sequence of conditional entropies. We show that the manner in which these conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure for spatial systems in any dimension. We compare and contrast entropy-convergence with mutual-information and structure-factor techniques for quantifying and detecting spatial structure.Comment: 11 pages, 5 figures, http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm

    Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein

    Get PDF
    To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS. We also observed multiple distinct protein-truncating variants in a highly constrained gene, DNAJC7. The signal in DNAJC7 exceeded genome-wide significance, and immunoblotting assays showed depletion of DNAJC7 protein in fibroblasts in a patient with ALS carrying the p.Arg156Ter variant. DNAJC7 encodes a member of the heat-shock protein family, HSP40, which, along with HSP70 proteins, facilitates protein homeostasis, including folding of newly synthesized polypeptides and clearance of degraded proteins. When these processes are not regulated, misfolding and accumulation of aberrant proteins can occur and lead to protein aggregation, which is a pathological hallmark of neurodegeneration. Our results highlight DNAJC7 as a novel gene for ALS

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    A Historiometric Examination of Machiavellianism and a New Taxonomy of Leadership

    Get PDF
    Although researchers have extensively examined the relationship between charismatic leadership and Machiavellianism (Deluga, 2001; Gardner & Avolio, 1995; House & Howell, 1992), there has been a lack of investigation of Machiavellianism in relation to alternative forms of outstanding leadership. Thus, the purpose of this investigation was to examine the relationship between Machiavellianism and a new taxonomy of outstanding leadership comprised of charismatic, ideological, and pragmatic leaders. Using an historiometric approach, raters assessed Machiavellianism via the communications of 120 outstanding leaders in organizations across the domains of business, political, military, and religious institutions. Academic biographies were used to assess twelve general performance measures as well as twelve general controls and five communication specific controls. The results indicated that differing levels of Machiavellianism is evidenced across the differing leader types as well as differing leader orientation. Additionally, Machiavellianism appears negatively related to performance, though less so when type and orientation are taken into account.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    Get PDF
    This is the pre-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2010 ElsevierWe present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c. The surface flux ratio is measured to be 1.2766 \pm 0.0032(stat.) \pm 0.0032 (syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments

    Observation of a new Xi(b) baryon

    Get PDF
    The first observation of a new b baryon via its strong decay into Xi(b)^- pi^+ (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 inverse femtobarns. The known Xi(b)^- baryon is reconstructed via the decay chain Xi(b)^- to J/psi Xi^- to mu^+ mu^- Lambda^0 pi^-, with Lambda^0 to p pi^-. A peak is observed in the distribution of the difference between the mass of the Xi(b)^- pi^+ system and the sum of the masses of the Xi(b)^- and pi^+, with a significance exceeding five standard deviations. The mass difference of the peak is 14.84 +/- 0.74 (stat.) +/- 0.28 (syst.) MeV. The new state most likely corresponds to the J^P=3/2^+ companion of the Xi(b).Comment: Submitted to Physical Review Letter

    Measurements of inclusive W and Z cross sections in pp collisions at root s=7 TeV

    Get PDF
    This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2011 Springer VerlagMeasurements of inclusive W and Z boson production cross sections in pp collisions at sqrt(s)=7 TeV are presented, based on 2.9 inverse picobarns of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give sigma(pp to WX) times B(W to muon or electron + neutrino) = 9.95 \pm 0.07(stat.) \pm 0.28(syst.) \pm 1.09(lumi.) nb and sigma(pp to ZX) times B(Z to oppositely charged muon or electron pairs) = 0.931 \pm 0.026(stat.) \pm 0.023(syst.) \pm 0.102(lumi.) nb. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported

    First measurement of hadronic event shapes in pp collisions at √s = 7 TeV

    Get PDF
    This is the Pre-Print version of the Article - Copyright @ 2011 ElsevierHadronic event shapes have been measured in proton-proton collisions at sqrt(s)=7 TeV, with a data sample collected with the CMS detector at the LHC. The sample corresponds to an integrated luminosity of 3.2 inverse picobarns. Event-shape distributions, corrected for detector response, are compared with five models of QCD multijet production

    Search for microscopic black hole signatures at the Large Hadron Collider

    Get PDF
    This is the Pre-Print version of the Article. The official published paper can be accessed from the link below - Copyright @ 2011 ElsevierA search for microscopic black hole production and decay in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 inverse picobarns. Events with large total transverse energy are analyzed for the presence of multiple high-energy jets, leptons, and photons, typical of a signal expected from a microscopic black hole. Good agreement with the expected standard model backgrounds, dominated by QCD multijet production, is observed for various final-state multiplicities. Limits on the minimum black hole mass are set, in the range 3.5 -- 4.5 TeV, for a variety of parameters in a model with large extra dimensions, along with model-independent limits on new physics in these final states. These are the first direct limits on black hole production at a particle accelerator.This work is supported by the FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore