We develop information-theoretic measures of spatial structure and pattern in
more than one dimension. As is well known, the entropy density of a
two-dimensional configuration can be efficiently and accurately estimated via a
converging sequence of conditional entropies. We show that the manner in which
these conditional entropies converge to their asymptotic value serves as a
measure of global correlation and structure for spatial systems in any
dimension. We compare and contrast entropy-convergence with mutual-information
and structure-factor techniques for quantifying and detecting spatial
structure.Comment: 11 pages, 5 figures,
http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm