181 research outputs found
Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications
Although a number of studies have demonstrated the influence of ABO blood group on plasma levels of von Willebrand factor (VWF), the nature of this association and its clinical importance is still largely unknown
Comparison of platelet function between sedentary individuals and competitive athletes at rest
BACKGROUND: There are controversial evidences on the effect of different types and workloads of physical exercise on primary hemostasis. In particular, little is known on the chronic influence of a strenuous and regular aerobic training regimen on platelet function. METHODS: The aim of this investigation was to compare platelet function between sedentary controls and trained athletes at rest and to evaluate whether a greater amount of exercise performed in professional cyclists may contribute to increased platelet chronic responsiveness compared to both elite cyclists and sedentary individuals. Platelet's ability to adhere and aggregate was assayed following a 12–24 h resting period in 49 active professional male road cyclists, 40 elite male cyclists and 43 matched sedentary healthy male volunteers, by the platelet function analyzer 100 (PFA-100). RESULTS AND DISCUSSION: Mean values of the collagen-epinephrine test did not differ between controls and athletes (sedentary controls: 111 ± 33 s; elite athletes: 113 ± 26 s, p = 0.93; professional athletes: 120 ± 33 s; p = 0.33), whereas mean values of the collagen-ADP test displayed a slightly but significant trend towards decreased values when comparing sedentary controls (83 ± 21 s) with either elite (77 ± 11 s, p < 0.01) or professional (75 ± 16 s, p < 0.01) athletes. CONCLUSION: The trend towards slightly lower collagen-ADP values are suggestive for a modest but significant chronic activation of primary hemostasis, highlighting the need to set appropriate reference ranges for the PFA-100 when evaluating primary hemostasis in physically active subjects
Expression of alternatively spliced human T-cell leukemia virus type 1 mRNAs is influenced by mitosis and by a novel cis-acting regulatory sequence
Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent. These findings provide a rational explanation for the intermediate-late temporal pattern of expression of the p30tof, p13, and p12/8 mRNAs described in previous studies. All the Rex-dependent mRNAs contained a 75-nucleotide intronic region that increased the nuclear retention and degradation of a reporter mRNA in the absence of other viral sequences. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis revealed that this sequence formed a stable hairpin structure. Cell cycle synchronization experiments indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. These findings indicate a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system
Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors
To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the ryanodine receptor 1 (RYR1) gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone deacetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+ p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone deacetylases. Here, we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content, and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations
"Paradoxical" p16 overexpression in cutaneous melanoma: Molecular and immunohistochemical analysis of a rare phenomenon with a focus on cell cycle regulatory molecules
Background: One of the most relevant genetic alterations in cutaneous melanoma (CM) is the biallelic inactivation/loss-of-heterozygosis (LOH) of cyclin-dependent kinase inhibitor 2 A (CDKN2A), which results in the immunohistochemical loss of p16 frequently found in CM. However, we recently described a rare case of dermal/deep-seated melanoma arising in giant congenital nevus (DDM-GCN) with p16 overexpression combined with p53 loss and tumor protein 53 (TP53) mutation. Herein, we reported a case series of CM with p16 overexpression and analyzed their clinicopathologic features, immunohistochemical expression of the cell cycle regulatory molecules (CCRM: p53, p21, Cyclin D1, Rb), and mutational landscape. Methods: We retrospectively tested for p16 all cases of CM diagnosed at our institution between January 1st 2019-April 1st 2022. In CM with p16 overexpression, we reported clinicopathologic features, immunohistochemical results for melanocytic markers and CCRM, and mutational landscape investigated with a next-generation sequencing (NGS) panel. In cases with zonal p16 overexpression, the immunohistochemical assessment for melanocytic markers and CCRM, as well as the NGS analysis have been performed in both components {with and without p16 overexpression [p16(+)c and p16(-)]}. Results: Overexpression of p16 was found in 10/2879 (0.35%) CM [5/10 (50%) diffuse and 5/10 (50%) zonal]. We combined the immunohistochemical results for CCRM and molecular data to classify the cases as follows: a) Group 1 with altered expression of at least one CCRM but no TP53 mutations [3/10 (30%), all with Rb altered/lost]; b) Group 2 with altered expression of at least one CCRM and TP53 mutations [4/10 (40%), all with p53 altered]; c) Group 3 with normal expression of CCRM and no TP53 mutations [3/10 (30%), all with mutations in MAPK pathway genes (NRAS and BRAF)]. In CM with zonal p16 overexpression, the histologic appearance of p16(+)c was heterogeneous, whereas combining CCRM profiles and molecular data the cases could be categorized as follows: a) cases with the same CCRM and molecular profiles in both p16(+)c and p16(-)c; b) cases with p16(+)c showing additional genetic mutations and/or modifications of CCRM expression. Conclusions: p16 overexpression is a rare event, occurring in advanced-stage, clinically- and histologically-heterogeneous CM. These lesions may be classified into three different groups based on CCRM expression and mutational profiles (including TP53 mutation). The analysis of CM with zonal p16 overexpression suggests that, at least in a subset of cases, this phenomenon could represent a sign of "molecular progression" due to the acquisition of additional genetic mutations and/or modifications of the CCRM profile
Recommended from our members
Novel and Rare Fusion Transcripts Involving Transcription Factors and Tumor Suppressor Genes in Acute Myeloid Leukemia.
Approximately 18% of acute myeloid leukemia (AML) cases express a fusion transcript. However, few fusions are recurrent across AML and the identification of these rare chimeras is of interest to characterize AML patients. Here, we studied the transcriptome of 8 adult AML patients with poorly described chromosomal translocation(s), with the aim of identifying novel and rare fusion transcripts. We integrated RNA-sequencing data with multiple approaches including computational analysis, Sanger sequencing, fluorescence in situ hybridization and in vitro studies to assess the oncogenic potential of the ZEB2-BCL11B chimera. We detected 7 different fusions with partner genes involving transcription factors (OAZ-MAFK, ZEB2-BCL11B), tumor suppressors (SAV1-GYPB, PUF60-TYW1, CNOT2-WT1) and rearrangements associated with the loss of NF1 (CPD-PXT1, UTP6-CRLF3). Notably, ZEB2-BCL11B rearrangements co-occurred with FLT3 mutations and were associated with a poorly differentiated or mixed phenotype leukemia. Although the fusion alone did not transform murine c-Kit+ bone marrow cells, 45.4% of 14q32 non-rearranged AML cases were also BCL11B-positive, suggesting a more general and complex mechanism of leukemogenesis associated with BCL11B expression. Overall, by combining different approaches, we described rare fusion events contributing to the complexity of AML and we linked the expression of some chimeras to genomic alterations hitting known genes in AML
Astrophysics with the Laser Interferometer Space Antenna
Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy as it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and other space-based instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA's first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed: ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or intermediate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help make progress in the different areas. New research avenues that LISA itself, or its joint exploitation with studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
- …