697 research outputs found
The non-Abelian gauge theory of matrix big bangs
We study at the classical and quantum mechanical level the time-dependent
Yang-Mills theory that one obtains via the generalisation of discrete
light-cone quantisation to singular homogeneous plane waves. The non-Abelian
nature of this theory is known to be important for physics near the
singularity, at least as far as the number of degrees of freedom is concerned.
We will show that the quartic interaction is always subleading as one
approaches the singularity and that close enough to t=0 the evolution is driven
by the diverging tachyonic mass term. The evolution towards asymptotically flat
space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3
small typographical changes
The capsule polysaccharide structure and biogenesis for non-O1 Vibrio cholerae NRT36S: genes are embedded in the LPS region
BACKGROUND: In V. cholerae, the biogenesis of capsule polysaccharide is poorly understood. The elucidation of capsule structure and biogenesis is critical to understanding the evolution of surface polysaccharide and the internal relationship between the capsule and LPS in this species. V. cholerae serogroup O31 NRT36S, a human pathogen that produces a heat-stable enterotoxin (NAG-ST), is encapsulated. Here, we report the covalent structure and studies of the biogenesis of the capsule in V. cholerae NRT36S. RESULTS: The structure of the capsular (CPS) polysaccharide was determined by high resolution NMR spectroscopy and shown to be a complex structure with four residues in the repeating subunit. The gene cluster of capsule biogenesis was identified by transposon mutagenesis combined with whole genome sequencing data (GenBank accession DQ915177). The capsule gene cluster shared the same genetic locus as that of the O-antigen of lipopolysaccharide (LPS) biogenesis gene cluster. Other than V. cholerae O139, this is the first V. cholerae CPS for which a structure has been fully elucidated and the genetic locus responsible for biosynthesis identified. CONCLUSION: The co-location of CPS and LPS biosynthesis genes was unexpected, and would provide a mechanism for simultaneous emergence of new O and K antigens in a single strain. This, in turn, may be a key element for V. cholerae to evolve new strains that can escape immunologic detection by host populations
Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays
We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width
difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates
of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of
data collected with the CDF II detector at the Fermilab Tevatron ppbar
collider. Assuming CP conservation, a good approximation for the B0s system in
the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006
(syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most
precise measurements to date. Our constraints on the weak phase and DeltaGamma
are consistent with CP conservation.
Dedicated to the memory of our dear friend and colleague, Michael P. Schmid
Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV
We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ
boson production. The boson pairs are produced in ppbar collisions at
sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated
luminosity collected with the CDF II detector at the Fermilab Tevatron. In this
search one W decays to leptons, and the other boson (W or Z) decays
hadronically. Combining with a previously published CDF measurement of Wgamma
boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta
kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.Comment: 7 pages, 3 figures. Submitted to Phys. Rev.
Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV
We search for pair production of supersymmetric top quarks (~t_1), followed
by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using
322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II
detector at Fermilab. Two candidate events pass our final selection criteria,
consistent with the standard model expectation. We set upper limits on the
cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass
m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153
GeV/c^2. The limits are also applicable to the case of a third generation
scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure
Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron
We study the underlying event in proton-antiproton collisions by examining
the behavior of charged particles (transverse momentum pT > 0.5 GeV/c,
pseudorapidity |\eta| < 1) produced in association with large transverse
momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the
Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV
center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan
production) or the leading jet (in high-pT jet production) in each event to
define three regions of \eta-\phi space; toward, away, and transverse, where
\phi is the azimuthal scattering angle. For Drell-Yan production (excluding the
leptons) both the toward and transverse regions are very sensitive to the
underlying event. In high-pT jet production the transverse region is very
sensitive to the underlying event and is separated into a MAX and MIN
transverse region, which helps separate the hard component (initial and
final-state radiation) from the beam-beam remnant and multiple parton
interaction components of the scattering. The data are corrected to the
particle level to remove detector effects and are then compared with several
QCD Monte-Carlo models. The goal of this analysis is to provide data that can
be used to test and improve the QCD Monte-Carlo models of the underlying event
that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.
Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV
Reconstructable final state kinematics and charge assignment in the reaction
ppbar->ttbar allows tests of discrete strong interaction symmetries at high
energy. We define frame dependent forward-backward asymmetries for the outgoing
top quark in both the ppbar and ttbar rest frames, correct for experimental
distortions, and derive values at the parton-level. Using 1.9/fb of ppbar
collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the
Fermilab Tevatron, we measure forward-backward top quark production asymmetries
in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} =
0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references
and change of tex
Measurement of the Production Cross Section and Search for Anomalous and Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the boson
pair production cross section and most sensitive test of anomalous
and couplings in collisions at a center-of-mass energy of 1.96
TeV. The candidates are reconstructed from decays containing two charged
leptons and two neutrinos, where the charged leptons are either electrons or
muons. Using data collected by the CDF II detector from 3.6 fb of
integrated luminosity, a total of 654 candidate events are observed with an
expected background contribution of events. The measured total
cross section is pb, which is in good agreement
with the standard model prediction. The same data sample is used to place
constraints on anomalous and couplings.Comment: submitted to Phys. Rev. Let
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ