67 research outputs found

    tert-Butyl 2-methyl-2-(4-nitro­benzo­yl)propanoate

    Get PDF
    The title compound, C15H19NO5, is bent with a dihedral angle of 61.8 (2)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). The dihedral angle of 0.8 (2)° between the mean planes of the nitro group and the benzene ring indicates near coplanarity. In the crystal, each mol­ecule is linked to four adjacent mol­ecules by weak C—H⋯O hydrogen-bonding inter­actions. Both benzene H atoms ortho to the ketone O atom form C—H⋯O hydrogen bonds with the keto O atoms of two neighboring mol­ecules (of the keto and ester groups, respectively), and the two other inter­actions involve the H atoms from a methyl group of the dimethyl residue, displaying C—H⋯O inter­actions with the O atoms of the nitro groups. These four inter­actions for each mol­ecule lead to the formation of two-dimensional sheets with a hydro­philic inter­ior, held together by weak hydrogen-bonded inter­actions, and a hydro­phobic exterior composed of protruding methyl groups which interst­ack with the methyl groups in adjacent sheets

    tert-Butyl 2-methyl-2-(4-methyl­benzo­yl)propanoate

    Get PDF
    The title compound, C16H22O3, is bent with a dihedral angle of 75.3 (1)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, the mol­ecules are linked into infinite chains held together by weak C—H⋯O hydrogen-bonded inter­actions between an H atom on the benzene ring of one mol­ecule and an O atom on the ketone functionality of an adjacent mol­ecule. The chains are arranged with neighbouring tert-butyl and dimethyl groups on adjacent chains exhibiting hydro­phobic stacking, with short C—H⋯H—C contacts (2.37 Å) between adjacent chain

    tert-Butyl 2-benzoyl-2-methyl­propanoate

    Get PDF
    The title compound, C15H20O3, is bent with a dihedral angle of 67.28 (9)° between the mean planes of the phenyl ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, mol­ecules related by inversion symmetry are connected by weak C—H⋯O inter­actions into infinite chains. On one side of the mol­ecule there are two adjacent inter­actions between neighbouring mol­ecules involving the H atoms of methyl groups from the dimethyl groups and the O atoms of the ketone; on the other side, there are also two inter­actions to another adjacent mol­ecule involving the H atoms on the phenyl rings and the carbonyl O atoms of the ester functionality

    tert-Butyl 2-(4-chloro­benzo­yl)-2-methyl­propanoate

    Get PDF
    The title compound, C15H19ClO3, is bent with a dihedral angle of 72.02 (9)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, mol­ecules related by inversion symmetry are connected by weak C—H⋯O inter­actions into infinite chains. These inter­actions involve H atoms from a methyl group of the dimethyl residue and the O atoms of the ketone on one side of a mol­ecule; on the other side there are inter­actions between H atoms of the benzene ring and the carbonyl O atoms of the ester functionality. There are no directional inter­actions between the chains

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing

    Get PDF
    Background Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour. Methods LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces). Findings 4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1–6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20–0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4–84.3). Interpretation Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission. Funding Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore