41 research outputs found

    Prevalência de lesões pré-neoplásicas e tumores cutâneos não melanomas em nipo-brasileiros residentes na cidade de Bauru, São Paulo, Brasil

    Get PDF
    Precancerous lesions and skin cancer are infrequent in Asians, and have received little documentation in the literature. Brazil has the world's largest contingent of Japanese immigrants and their descendants, and 70% live in the State of São Paulo. The prevalence of such skin lesions in Japanese-Brazilians is unknown. This study aimed to assess the prevalence of actinic keratoses and non-melanoma skin cancer in first and second-generation Japanese-Brazilians over 30 years of age, without miscegenation, living in the city of Bauru, São Paulo State, in 2006. Of the 567 Japanese-Brazilians that underwent dermatological examination, actinic keratosis was diagnosed in 76, with a mean age of 68.9 years, and a single case of basal cell carcinoma was detected in a 39-year-old female patient. In Japan, prevalence of actinic keratosis varies from 0.76% to 5%, and the incidence of non-melanoma skin cancer is 1.2 to 5.4/100 thousand. Japanese-Brazilians from Bauru showed a 13.4% prevalence of actinic keratoses and earlier age at onset. Proximity to the Equator and a history of farming contribute to these higher rates. Presence of solar melanosis was associated with a 1.9-fold risk of developing actinic keratosis.Manifestações cutâneas pré-neoplásicas e neoplásicas em asiáticos são infreqüentes e pouco documentadas. O Brasil possui o maior contingente de imigrantes japoneses e 70% deles residem no Estado de São Paulo. A prevalência dessas lesões em nipo-brasileiros é desconhecida. O presente estudo tem como objetivo avaliar a prevalência de queratoses actínicas e tumores cutâneos não melanomas em nipo-brasileiros acima de trinta anos de 1ª geração ou 2ª geração, sem miscigenação, residentes na cidade de Bauru, no ano de 2006. Dos 567 nipo-brasileiros submetidos a exame dermatológico, diagnosticou-se queratose actínica em 76 pacientes, com média de idade de 68,9 anos, e único carcinoma basocelular em paciente do sexo feminino de 39 anos. No Japão, a prevalência de queratose actínica é de 0,76% a 5% e a incidência de tumores cutâneos não melanomas é de 1,2 a 5,4/100 mil. Os nipo-brasileiros de Bauru apresentaram prevalência de 13,4% de queratoses actínicas e idade mais precoce de aparecimento. Proximidade com o Equador e atividades rurais contribuem para esses achados. A presença de melanose solar demonstrou risco 1,9 vez maior de desenvolver queratose actínica.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de MedicinaUniversidade Estadual Paulista Faculdade de Medicina de BotucatuUNIFESP, EPMSciEL

    Paracoccidioidomicose: lesões cutâneas, infiltrativas, sarcoidose-símile, diagnosticadas como hanseníase tuberculóide

    Get PDF
    The authors report a case of paracoccidioidomycosis misinterpreted as tuberculoid leprosy, both on clinical and histological examination. Sarcoid-like cutaneous lesion as the initial presentation is rare in young patient with paracoccidioidomycosis and can simulate other infectious or inflammatory diseases. On histology, tuberculoid granuloma presented similar difficulties. Treatment with dapsone, a sulfonamide derivative, could have delayed the presumed natural clinical course to the classical juvenile type of paracoccidioidomycosis, observed only 24 months after the patient had been treated for leprosy.Os Autores relatam um caso de paracoccidioidomicose diagnosticado como se fora hanseníase tuberculóide, tanto do ponto de vista clínico como histopatológico. Lesão cutânea de padrão sarcoídico é raramente observada como lesão inicial da paracoccidioidomicose em jovens e pode simular outras dermatoses infecciosas ou inflamatórias. O achado histológico de granuloma tuberculóide apresenta dificuldade diagnóstica similar. O tratamento realizado com dapsone, um derivado sulfamídico, pode ter retardado a evolução clínica esperada para o padrão clássico da paracoccidioidomicose tipo juvenil, o qual apenas se materializou 24 meses após a paciente ter iniciado tratamento como hanseníase

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
    corecore