616 research outputs found

    Momentum flux density, kinetic energy density and their fluctuations for one-dimensional confined gases of non-interacting fermions

    Full text link
    We present a Green's function method for the evaluation of the particle density profile and of the higher moments of the one-body density matrix in a mesoscopic system of N Fermi particles moving independently in a linear potential. The usefulness of the method is illustrated by applications to a Fermi gas confined in a harmonic potential well, for which we evaluate the momentum flux and kinetic energy densities as well as their quantal mean-square fluctuations. We also study some properties of the kinetic energy functional E_{kin}[n(x)] in the same system. Whereas a local approximation to the kinetic energy density yields a multi-valued function, an exact single-valued relationship between the density derivative of E_{kin}[n(x)] and the particle density n(x) is demonstrated and evaluated for various values of the number of particles in the system.Comment: 10 pages, 5 figure

    Dependence of direct detection signals on the WIMP velocity distribution

    Full text link
    The signals expected in WIMP direct detection experiments depend on the ultra-local dark matter distribution. Observations probe the local density, circular speed and escape speed, while simulations find velocity distributions that deviate significantly from the standard Maxwellian distribution. We calculate the energy, time and direction dependence of the event rate for a range of velocity distributions motivated by recent observations and simulations, and also investigate the uncertainty in the determination of WIMP parameters. The dominant uncertainties are the systematic error in the local circular speed and whether or not the MW has a high density dark disc. In both cases there are substantial changes in the mean differential event rate and the annual modulation signal, and hence exclusion limits and determinations of the WIMP mass. The uncertainty in the shape of the halo velocity distribution is less important, however it leads to a 5% systematic error in the WIMP mass. The detailed direction dependence of the event rate is sensitive to the velocity distribution. However the numbers of events required to detect anisotropy and confirm the median recoil direction do not change substantially.Comment: 21 pages, 7 figures, v2 version to appear in JCAP, minor change

    Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Get PDF
    Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4-6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tetheredballoon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2-3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    Enhancing Interdisciplinary Instruction in General and Special Education: Thematic Units and Technology

    Get PDF
    This article discusses interdisciplinary thematic units in the context of special and general education curricula and focuses on ways technology can be used to enhance interdisciplinary thematic units. Examples of curriculum integration activities enhanced by technology are provided in the context of productivity tools, presentation and multimedia tools, contextual themed software, and Web-based activities.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Aligning simulation models: A case study and results

    Full text link
    This paper develops the concepts and methods of a process we will call “alignment of computational models” or “docking” for short. Alignment is needed to determine whether two models can produce the same results, which in turn is the basis for critical experiments and for tests of whether one model can subsume another. We illustrate our concepts and methods using as a target a model of cultural transmission built by Axelrod. For comparison we use the Sugarscape model developed by Epstein and Axtell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44707/1/10588_2005_Article_BF01299065.pd

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore