17 research outputs found

    Decentralized Open Platform for Vaccination—A German Example: COVID-19-Vacc

    Get PDF
    The COVID-19 pandemic has massively impacted the health of many people worldwide and poses significant challenges for our social, economic, and political life. Global vaccination should help the world overcome the pandemic and return to a “normal” life. In Germany, the Federal Ministry of Health presented its “National Vaccination Strategy COVID-19”, which describes the primary actors, elements, and activities required for the immunization of the German population. However, the implementation is challenging due to the federal organization of the German state in sixteen federal states. While essential processes such as vaccination rate monitoring and surveillance are planned centrally, the sixteen federal states are responsible for implementing the vaccination strategy in a decentralized manner. Furthermore, the European General Data Protection Regulation (EU-GDPR) imposes strict rules for processing and exchanging personal data. However, Germany is only a case in point. Governmental decisions always need to be implemented by regional and/or local actors, the number of which varies greatly depending on the country. This work addresses these challenges by proposing the COVID-19-Vacc Platform—an open and decentralized digital platform focused on vaccinations as a matter of example. The proposed platform model connects various actors and enables them to involve, conduct, and track the vaccination process while meeting all necessary data protection and security requirements defined by EU-GDPR. Using the DMS Reference Model as the theoretical framework, the blueprint of the COVID-19-Vacc Platform is developed, outlining the platform’s ecosystem structure, its interactions process model, and the service stack, defining how the proposed platform works on the operational level. Our COVID-19-Vacc Platform may help facilitate a fast and EU-GDPR compliant implementation of COVID-19 vaccination strategies. Beyond that, the proposed open and decentralized platform model might facilitate international interconnectivity and therefore the management of emerging global pandemics or other global health-related crisi

    Toward a Stronger Theoretical Grounding of Computational Communication Science: How Macro Frameworks Shape Our Research Agendas

    No full text
    Manuscript accepted for publication at the journal Computational Communication Researc

    Toward a Stronger Theoretical Grounding of Computational Communication Science: How Macro Frameworks Shape Our Research Agendas

    No full text
      Computational communication science (CCS) is embraced by many as a fruitful methodological approach to studying communication in the digital era. However, theoretical advances have not been considered equally important in CCS. Specifically, we observe an emphasis on mid-range and micro theories that misses a larger discussion on how macro-theoretical frameworks can serve CCS scholarship. With this article, we aim to stimulate such a discussion. Although macro frameworks might not point directly to specific questions and hypotheses, they shape our research through influencing which kinds of questions we ask, which kinds of hypotheses we formulate, and which methods we find adequate and useful. We showcase how three selected theoretical frameworks might advance CCS scholarship in this way: (1) complexity theory, (2) theories of the public sphere, and (3) mediatization theory. Using online protest as an example, we discuss how the focus (and the blind spots) of our research designs shifts with each framework

    A new mass conservation approach to the study of CO2 advection in an alpine forest

    Get PDF
    A new method is proposed for the computation of CO 2 Net Ecosystem Exchange(NEE) and its components in a forest ecosystem. Advective flux is estimated by takinginto account the air mass conservation principle. For this purpose, wind and dry airdensity values on the surface of the control volume are first corrected and then theadvective flux is estimated on the surface of the control volume. Turbulent flux is alsocomputed along the surface of the control volume while storage flux is computed insidethe volume. Additional characteristics of this method are that incompressibility of themean flow is not assumed a priori, and that vertical and horizontal advective fluxes are nottreated separately, but their sum is estimated directly. The methodology is applied toexperimental data collected with a three-dimensional scheme at the alpine site of Renonduring the Advex project (July 2005). The advection flux was found to be prevailingpositive at night and negative during the day, as was found in previous studies onadvection for the same site, but showed a lower scatter in half-hour calculated values. Wetested the effect of its summation on turbulent and storage fluxes to produce half-hourlyvalues of NEE. Nighttime NEE values were used in functional relations with soiltemperature, daytime values with PPFD. The effect of addition of the advectioncomponent was an increase in the values of parameters indicating ecosystem respiration,quantum yield, and photosynthetic capacity. The coefficient of correlation between NEEand environmental drivers increased

    Energy Balance Closure At Fluxnet Sites

    Get PDF
    A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy fluxes to available energy. These methods indicate a general lack of closure at most sites, with amean imbalance in the order of 20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpreting long-term CO2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated with the eddy covariance technique or from errors in calculating the available energy terms. Although it was not entirely possible to critically evaluate all the possible sources of the imbalance, circumstantial evidence suggested a link between the imbalance and CO2 fluxes. For a given value of photosynthetically active radiation, the magnitude of CO2 uptake was less when the energy imbalance was greater. Similarly, respiration (estimated by nocturnal CO2 release to the atmosphere) was significantly less when the energy imbalance was greater

    Deficiency in APOBEC2 Leads to a Shift in Muscle Fiber Type, Diminished Body Mass, and Myopathy

    No full text
    The apoB RNA-editing enzyme, catalytic polypeptide-like (APOBEC) family of proteins includes APOBEC1, APOBEC3, and activation-induced deaminase, all of which are zinc-dependent cytidine deaminases active on polynucleotides and involved in RNA editing or DNA mutation. In contrast, the biochemical and physiological functions of APOBEC2, a muscle-specific member of the family, are unknown, although it has been speculated, like APOBEC1, to be an RNA-editing enzyme. Here, we show that, although expressed widely in striated muscle (with levels peaking late during myoblast differentiation), APOBEC2 is preferentially associated with slow-twitch muscle, with its abundance being considerably greater in soleus compared with gastrocnemius muscle and, within soleus muscle, in slow as opposed to fast muscle fibers. Its abundance also decreases following muscle denervation. We further show that APOBEC2-deficient mice harbor a markedly increased ratio of slow to fast fibers in soleus muscle and exhibit an ∼15–20% reduction in body mass from birth onwards, with elderly mutant animals revealing clear histological evidence of a mild myopathy. Thus, APOBEC2 is essential for normal muscle development and maintenance of fiber-type ratios; although its molecular function remains to be identified, biochemical analyses do not especially argue for any role in RNA editing

    Within-Field Variability of Bare Soil Evaporation Derived from Eddy Covariance Measurements

    No full text
    Bare soil evaporation was measured with the eddy-covariance method at the Selhausen field site. The site has a distinct gradient in soil texture, with a considerably higher stone content at the upper part of the field. We investigated the effect of different soil properties in the upper and lower parts of the field on evaporation using eddy covariance (EC) measurements that were combined with a footprint model. Because only one EC station was available, simultaneous evaporation measurements from the two field parts were not available. Therefore, measurements were put into the context of meteorologic and soil hydrologic conditions. Meteorologic conditions were represented by the potential evaporation, i.e., the maximum evaporation that is determined by the energy available for evaporation. The influence of precipitation and soil hydrologic conditions on the actual evaporation rate was represented by a simple soil evaporation model. The amount of water that could be evaporated at the potential rate from the lower part of the field was found to be large and considerably larger than from the upper part of the field. The difference in evaporation led to threefold larger predicted percolation or runoff in the upper than the lower part of the field. Simulations using the Richards equation were able to reproduce the differences in evaporation between the lower and upper parts of the field and relate them to the different groundwater table depths in the two parts of the field

    16p11.2 Deletion Syndrome Mice Display Sensory and Ultrasonic Vocalization Deficits During Social Interactions

    No full text
    Recurrent deletions and duplications at chromosomal region 16p11.2 are variably associated with speech delay, autism spectrum disorder, developmental delay, schizophrenia, and cognitive impairments. Social communication deficits are a primary diagnostic symptom of autism. Here we investigated ultrasonic vocalizations (USVs) in young adult male 16p11.2 deletion mice during a novel three-phase male–female social interaction test that detects vocalizations emitted by a male in the presence of an estrous female, how the male changes its calling when the female is suddenly absent, and the extent to which calls resume when the female returns. Strikingly fewer vocalizations were detected in two independent cohorts of 16p11.2 heterozygous deletion males (+/−) during the first exposure to an unfamiliar estrous female, as compared to wildtype littermates (+/+). When the female was removed, +/+ emitted calls, but at a much lower level, whereas +/− males called minimally. Sensory and motor abnormalities were detected in +/−, including higher nociceptive thresholds, a complete absence of acoustic startle responses, and hearing loss in all +/− as confirmed by lack of auditory brainstem responses to frequencies between 8 and 100 kHz. Stereotyped circling and backflipping appeared in a small percentage of individuals, as previously reported. However, these sensory and motor phenotypes could not directly explain the low vocalizations in 16p11.2 deletion mice, since (a) +/− males displayed normal abilities to emit vocalizations when the female was subsequently reintroduced, and (b) +/− vocalized less than +/+ to social odor cues delivered on an inanimate cotton swab. Our findings support the concept that mouse USVs in social settings represent a response to social cues, and that 16p11.2 deletion mice are deficient in their initial USVs responses to novel social cues
    corecore