99 research outputs found

    История развития физической культуры и спорта на Урале в дореволюционный период

    Get PDF
    На сегодняшний день становится чрезвычайно актуальным рассмотрение феномена физической культуры и спорта сквозь призму принципа историзма. Существует еще много неизвестного в истории физической культуры, что требует переоценки событий, фактов с позиции современност

    Publisher Correction: Structural basis of ligand recognition at the human MT1 melatonin receptor (Nature, (2019), 569, 7755, (284-288), 10.1038/s41586-019-1141-3)

    Get PDF
    Change history: In this Letter, the rotation signs around 90°, 135° and 15° were missing and in the HTML, Extended Data Tables 2 and 3 were the wrong tables; these errors have been corrected online. © 2019, The Author(s), under exclusive licence to Springer Nature Limited

    Structural basis of ligand recognition at the human MT1 melatonin receptor

    Get PDF
    Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin–serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors

    Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV

    Get PDF
    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s = 13 TeV in 2015. Using a large sample of J/ψ→μμ and Z→μμ decays from 3.2 fb−1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| 2.2, the pT resolution for muons from Z→μμ decays is 2.9 % while the precision of the momentum scale for low-pT muons from J/ψ→μμ decays is about 0.2%

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model
    corecore