38 research outputs found

    Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles

    Get PDF
    BACKGROUND: Technological advances have enabled the analysis of very small amounts of DNA in forensic cases. However, the DNA profiles from such evidence are frequently incomplete and can contain contributions from multiple individuals. The complexity of such samples confounds the assessment of the statistical weight of such evidence. One approach to account for this uncertainty is to use a likelihood ratio framework to compare the probability of the evidence profile under different scenarios. While researchers favor the likelihood ratio framework, few open-source software solutions with a graphical user interface implementing these calculations are available for practicing forensic scientists. RESULTS: To address this need, we developed Lab Retriever, an open-source, freely available program that forensic scientists can use to calculate likelihood ratios for complex DNA profiles. Lab Retriever adds a graphical user interface, written primarily in JavaScript, on top of a C++ implementation of the previously published R code of Balding. We redesigned parts of the original Balding algorithm to improve computational speed. In addition to incorporating a probability of allelic drop-out and other critical parameters, Lab Retriever computes likelihood ratios for hypotheses that can include up to four unknown contributors to a mixed sample. These computations are completed nearly instantaneously on a modern PC or Mac computer. CONCLUSIONS: Lab Retriever provides a practical software solution to forensic scientists who wish to assess the statistical weight of evidence for complex DNA profiles. Executable versions of the program are freely available for Mac OSX and Windows operating systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0740-8) contains supplementary material, which is available to authorized users

    Improving eye care for veterans with diabetes: An example of using the QUERI steps to move from evidence to implementation: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite being a critical part of improving healthcare quality, little is known about how best to move important research findings into clinical practice. To address this issue, the Department of Veterans Affairs (VA) developed the Quality Enhancement Research Initiative (QUERI), which provides a framework, a supportive structure, and resources to promote the more rapid implementation of evidence into practice.</p> <p>Methods</p> <p>This paper uses a practical example to demonstrate the use of the six-step QUERI process, which was developed as part of QUERI and provides a systematic approach for moving along the research to practice pipeline. Specifically, we describe a series of projects using the six-step framework to illustrate how this process guided work by the Diabetes Mellitus QUERI (DM-QUERI) Center to assess and improve eye care for veterans with diabetes.</p> <p>Results</p> <p>Within a relatively short time, DM-QUERI identified a high-priority issue, developed evidence to support a change in the diabetes eye screening performance measure, and identified a gap in quality of care. A prototype scheduling system to address gaps in screening and follow-up also was tested as part of an implementation project. We did not succeed in developing a fully functional pro-active scheduling system. This work did, however, provide important information to help us further understand patients' risk status, gaps in follow-up at participating eye clinics, specific considerations for additional implementation work in the area of proactive scheduling, and contributed to a change in the prevailing diabetes eye care performance measure.</p> <p>Conclusion</p> <p>Work by DM-QUERI to promote changes in the delivery of eye care services for veterans with diabetes demonstrates the value of the QUERI process in facilitating the more rapid implementation of evidence into practice. However, our experience with using the QUERI process also highlights certain challenges, including those related to the hybrid nature of the research-operations partnership as a mechanism for promoting rapid, system-wide implementation of important research findings. In addition, this paper suggests a number of important considerations for future implementation work, both in the area of pro-active scheduling interventions, as well as for implementation science in general.</p

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Varieties of Living Things: Life at the Intersection of Lineage and Metabolism

    Full text link
    corecore