688 research outputs found

    Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.

    Get PDF
    Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.NE/L002507/1, BB/M007693/1, BB/I024518/1 (NERC, BBSRC and NSF). A Cambridge Trust Vice Chancellor’s award and Lucy Cavendish College, Cambridge, for supporting the PhD scholarship of MMMG. DJO and ECS acknowledge support from (BBSRC; grant number BB/I024488/1)

    Spin-Imbalance in a One-Dimensional Fermi Gas

    Full text link
    Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov proposed an exotic pairing mechanism (FFLO) where magnetism is accommodated by formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Here we report experimental measurements of density profiles of a two spin mixture of ultracold 6Li atoms trapped in an array of one dimensional (1D) tubes, a system analogous to electrons in 1D wires. At finite spin imbalance, the system phase separates with an inverted phase profile in comparison to the three-dimensional case. In 1D we find a partially polarized core surrounded by wings composed of either a completely paired BCS superfluid or a fully polarized Fermi gas, depending on the degree of polarization. Our observations are in quantitative agreement with theoretical calculations in which the partially polarized phase is found to be a 1D analogue of the FFLO state. This study demonstrates how ultracold atomic gases in 1D may be used to create non-trivial new phases of matter, and also paves the way for direct observation and further study of the FFLO phase.Comment: 30 pages, 7 figure

    Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish

    Get PDF
    The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.

    Get PDF
    Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    Karyotype and genome size of Iberochondrostoma almacai (Teleostei, Cyprinidae) and comparison with the sister-species I.lusitanicum

    Get PDF
    This study aimed to define the karyotype of the recently described Iberian endemic Iberochondrostoma almacai, to revisit the previously documented chromosome polymorphisms of its sister species I.lusitanicum using C-, Ag-/CMA3 and RE-banding, and to compare the two species genome sizes. A 2n = 50 karyotype (with the exception of a triploid I.lusitanicum specimen) and a corresponding haploid chromosome formula of 7M:15SM:3A (FN = 94) were found. Multiple NORs were observed in both species (in two submetacentric chromosome pairs, one of them clearly homologous) and a higher intra and interpopulational variability was evidenced in I.lusitanicum. Flow cytometry measurements of nuclear DNA content showed some significant differences in genome size both between and within species: the genome of I. almacai was smaller than that of I.lusitanicum (mean values 2.61 and 2.93 pg, respectively), which presented a clear interpopulational variability (mean values ranging from 2.72 to 3.00 pg). These data allowed the distinction of both taxa and confirmed the existence of two well differentiated groups within I. lusitanicum: one that includes the populations from the right bank of the Tejo and Samarra drainages, and another that reunites the southern populations. The peculiar differences between the two species, presently listed as “Critically Endangered”, reinforced the importance of this study for future conservation plans

    Genetic Variation and De Novo Mutations in the Parthenogenetic Caucasian Rock Lizard Darevskia unisexualis

    Get PDF
    Unisexual all-female lizards of the genus Darevskia that are well adapted to various habitats are known to reproduce normally by true parthenogenesis. Although they consist of unisexual lineages and lack effective genetic recombination, they are characterized by some level of genetic polymorphism. To reveal the mutational contribution to overall genetic variability, the most straightforward and conclusive way is the direct detection of mutation events in pedigree genotyping. Earlier we selected from genomic library of D. unisexualis two polymorphic microsatellite containg loci Du281 and Du215. In this study, these two loci were analyzed to detect possible de novo mutations in 168 parthenogenetic offspring of 49 D. unisexualis mothers and in 147 offspring of 50 D. armeniaca mothers . No mutant alleles were detected in D. armeniaca offspring at both loci, and in D. unisexualis offspring at the Du215 locus. There were a total of seven mutational events in the germ lines of four of the 49 D. unisexualis mothers at the Du281 locus, yielding the mutation rate of 0.1428 events per germ line tissue. Sequencing of the mutant alleles has shown that most mutations occur via deletion or insertion of single microsatellite repeat being identical in all offspring of the family. This indicates that such mutations emerge at the early stages of embryogenesis. In this study we characterized single highly unstable (GATA)n containing locus in parthenogenetic lizard species D. unisexualis. Besides, we characterized various types of mutant alleles of this locus found in the D. unisexualis offspring of the first generation. Our data has shown that microsatellite mutations at highly unstable loci can make a significant contribution to population variability of parthenogenetic lizards
    corecore