38 research outputs found

    Prevalence of high-risk HPV genotypes, categorised by their quadrivalent and nine-valent HPV vaccination coverage, and the genotype association with high-grade lesions

    Get PDF
    BACKGROUND: The new nine-valent vaccine against human papillomavirus (HPV) includes the four HPV genotypes (6, 11, 16, and 18) that are targeted by the older quadrivalent HPV vaccine, plus five additional oncogenic types (31, 33, 45, 52, and 58) remain significantly associated with high grade lesions. We aimed to determine the prevalence of high-risk HPV genotypes in unvaccinated subjects and the association of these genotypes with the incidence of high-grade lesions. We also assessed which, if either, of these two HPV vaccines could have prevented these cases. METHODS: This cross-sectional study, conducted from 4 January 2010 to 30 December 2011, was composed of 595 women attending the Hospital General Universitario de Elche (Spain) gynaecology department who were positively screened for opportunistic cervical cancer by pap smears and HPV detection during a routine gynaecological health check. The pap smear results were classified using the Bethesda system. HPV genotyping was performed with the Linear Array HPV genotyping test, and viruses were classified by the International Agency for Research on Cancer assessment of HPV carcinogenicity. Odds ratios (ORs) with their 95% confidence intervals (95% CI) were estimated by logistic regression, adjusting for age and immigrant status. The prevented fraction among those exposed (PFe-adjusted) was determined as a measure of impact. RESULTS: At least one of the additional five high-risk HPV genotypes present in the nine-valent HPV vaccine was detected in 20.5% of subjects. After excluding women with genotype 16 and/or 18 co-infection, high-risk genotypes (31, 33, 45, 52, and 58) were associated with a higher risk of intraepithelial lesion or malignancy: adjusted OR?=?3.51 (95% CI, 1.29-9.56), PFe-adjusted?=?0.72 (95% CI, 0.22-0.90). Genotypes that are still non-vaccine-targeted were detected in 17.98% of the women, but these were not significantly associated with high-grade lesions. CONCLUSION: The greater protection of the nine-valent HPV vaccine is likely to have a positive impact because, in the absence of genotype 16 or 18 infection, these five genotypes on their own remained significantly associated with high-grade lesions

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Clinical practice guidelines for the management of hypothyroidism

    Full text link

    A taxonomic bibliography of the South American snakes of the Crotalus durissus complex (Serpentes, Viperidae)

    Full text link
    corecore