69 research outputs found

    Dosimetric effect of intra-fractional and inter-fractional target motion in lung cancer radiotherapy techniques

    Get PDF
    Purpose: The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT), dynamic intensity modulated radiotherapy (D-IMRT), step-shoot (SS-IMRT), and volumetric modulated arc therapy (VMAT) treatment delivery techniques due to intra- and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, SS-IMRT, and VMAT). These plans were delivered in a clinical linear accelerator equipped with HexaPOD™ evo RT System. The target dose of static QUASAR phantom was calculated that served as reference dose to the target. The QUASAR respiratory body phantom along with patients breathing wave form and HexaPOD™ evo RT System was used to simulate the intra-fraction and inter-fraction motions. Dose measurements were done by applying the intra-fractional and inter-fractional motions in all the four treatment delivery techniques.Results: The maximum percentage deviation in a single field was -4.3%, 10.4%, and -12.2% for 3DCRT, D-IMRT and SS-IMRT deliveries, respectively. Similarly, the deviation for a single fraction was -1.51%, -1.88%, -2.22%, and -3.03% for 3DCRT, D-IMRT, SS-IMRT and VMAT deliveries, respectively. Conclusion: The impact of inter-fractional and intra-fractional uncertainties calculated as deviation between dynamic and static condition dose was large in some fractions, however average deviation calculated for thirty fractions was well within 0.5% in all the four techniques. Therefore, inter- and intra-fractional uncertainties could be concern in fewer fraction treatments such as stereotactic body radiation therapy, and should be used in conjunction with intra- and inter-fractional motion management techniques

    ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor cells adapt to endoplasmic reticulum (ER) stress through a set of conserved intracellular pathways, as part of a process termed the unfolded protein response (UPR). The expression of UPR genes/proteins correlates with increasing progression and poor clinical outcome of several tumor types, including prostate cancer. UPR signaling can activate NF-κB, a master regulator of transcription of pro-inflammatory, tumorigenic cytokines. Previous studies have shown that Lipocalin 2 (Lcn2) is upregulated in several epithelial cancers, including prostate cancer, and recently Lcn2 was implicated as a key mediator of breast cancer progression. Here, we hypothesize that the tumor cell UPR regulates Lcn2 production.</p> <p>Methods</p> <p>We interrogated Lcn2 regulation in murine and human prostate cancer cells undergoing pharmacological and physiological ER stress, and tested UPR and NF-κB dependence by using pharmacological inhibitors of these signaling pathways.</p> <p>Results</p> <p>Induction of ER stress using thapsigargin (Tg), a canonical pharmacologic ER stress inducer, or via glucose deprivation, a physiologic ER stressor present in the tumor microenvironment, upregulates LCN2 production in murine and human prostate cancer cells. Inhibition of the UPR using 4-phenylbutyric acid (PBA) dramatically decreases Lcn2 transcription and translation. Inhibition of NF-κB in prostate cancer cells undergoing Tg-mediated ER stress by BAY 11-7082 abrogates Lcn2 upregulation.</p> <p>Conclusions</p> <p>We conclude that the UPR activates Lcn2 production in prostate cancer cells in an NF-κB-dependent manner. Our results imply that the observed upregulation of Lipocalin 2 in various types of cancer cells may be the direct consequence of concomitant UPR activation, and that the ER stress/Lipocalin 2 axis is a potential new target for intervention in cancer progression.</p

    Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations.

    Get PDF
    Several studies using genome-wide molecular techniques have reported various degrees of genetic heterogeneity between primary tumours and their distant metastases. However, it has been difficult to discern patterns of dissemination owing to the limited number of patients and available metastases. Here, we use phylogenetic techniques on data generated using whole-exome sequencing and copy number profiling of primary and multiple-matched metastatic tumours from ten autopsied patients to infer the evolutionary history of breast cancer progression. We observed two modes of disease progression. In some patients, all distant metastases cluster on a branch separate from their primary lesion. Clonal frequency analyses of somatic mutations show that the metastases have a monoclonal origin and descend from a common 'metastatic precursor'. Alternatively, multiple metastatic lesions are seeded from different clones present within the primary tumour. We further show that a metastasis can be horizontally cross-seeded. These findings provide insights into breast cancer dissemination

    Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest

    Get PDF
    The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis

    Dijet production in √s = 7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

    Get PDF
    A 6.8 nb−¹ sample of pp collision data collected under low-luminosity conditions at √s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, ξ˜, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp → p X). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ηF and small ξ˜, with a diffractive contribution which is significant at the highest ΔηF and the lowest ξ˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions
    corecore