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Abstract

Background: Identification of a gene expression signature in primary breast tumors that could classify patients by
lymph node status would allow patients to avoid the morbidities of surgical disruption of the lymph nodes.
Attempts to identify such a signature have, to date, been unsuccessful. Because breast tumor subtypes have unique
molecular characteristics and different sites of metastasis, molecular signatures for lymph node involvement may
vary by subtype.

Methods: Gene expression data was generated from HG U133A 2.0 arrays for 135 node positive and 210 node
negative primary breast tumors. Intrinsic subtype was assigned using the BreastPRS. Differential gene expression
analysis was performed using one-way ANOVA using lymph node status as the variable with a False-discovery rate
<0.05, to define significance.

Results: Luminal A tumors were most common (51%) followed by basal-like (27%), HER2-enriched (14%) luminal B
(7%) and normal-like (1%). Basal-like and luminal A tumors were less likely to have metastatic lymph nodes (35%
and 37%, respectively) compared to luminal B or HER2-enriched (52% and 51%, respectively). No differentially
expressed genes associated with lymph node status were detected when all tumors were considered together or
within each subtype.

Conclusions: Gene expression patterns from the primary tumor are not able to stratify patients by lymph node
status. Although the primary breast tumor may influence tumor cell dissemination, once metastatic cells enter the
lymphatics, it is likely that characteristics of the lymph node microenvironment, such as establishment of a
pre-metastatic niche and release of pro-survival factors, determine which cells are able to colonize. The inability to
utilize molecular profiles from the primary tumor to determine lymph node status suggest that other avenues of
investigation, such as how systemic factors including diminished immune response or genetic susceptibility
contribute to metastasis, may be critical in the development of tools for non-surgical assessment of lymph node
status with a corresponding reduction in downstream sequelae associated with
disruption of the lymphatics.
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Background
Surgical treatment for patients with breast cancer is con-
stantly changing [1]. The radical mastectomy, which re-
moved the breast, underlying chest muscle and axillary
lymph nodes has been supplanted by less aggressive ap-
proaches such as lumpectomy, and complete removal of
the axillary lymph nodes has been replaced by sentinel
lymph node biopsy (SLNB) [2,3]. Recent results from the
ACOSOG Z0011 trial demonstrate that SLNB performed
without follow up axillary dissection is reasonable for
patients with early-stage, lymph node positive breast
cancer [4].
Although SLNB is associated with lower morbidities,

surgical disruption of the lymphatic system can result in
serious side effects, including numbness, decreased mo-
bility and lymphedema, significantly impacting the qual-
ity of life of breast cancer patients. For example,
lymphedema can result in pain, decreased functional
ability, cosmetic deformities and psychological stress [5]
and is estimated to affect 10-20% of breast cancer survi-
vors [6]. In addition, SLNB is associated with a false
negative rate of 8-10% [7,8]. Development of a signature
that effectively discriminates patients by lymph node sta-
tus could stratify patients into those needing surgical
evaluation of the lymph nodes for prognostic purposes
from those at low-risk of metastasis who may be spared
possible serious side effects as well as identify those pa-
tients misdiagnosed with negative lymph node status
after SLNB, who may in fact benefit from more aggres-
sive treatment.
Although a few studies have identified genes or pro-

teins expressed in primary tumors that differ in expres-
sion levels based on lymph node status [9-14], other
studies failed to validate these results and/or found that
molecular profiling of primary tumors cannot effectively
classify patients by lymph node status [15-18]. Inability
to identify a signature of lymph node metastasis may be
attributable to heterogeneity within primary breast tu-
mors associated with intrinsic subtypes. Breast tumors
can be classified into subtypes, including luminal A, lu-
minal B, HER2 positive and basal-like, based on different
patterns of gene expression. Molecular heterogeneity
within tumor subtypes may also preclude the identifica-
tion of a single signature of metastasis. Breast tumors
can be classified by their intrinsic subtypes, including lu-
minal A, luminal B, HER2 positive and basal-like, based
on different patterns of gene expression [19,20]. These
subtypes have been associated with differences in prefer-
ential sites of metastasis; for example, bone is the most
common site of metastasis for luminal A tumors while
brain is most common for basal-like tumors [21]. Be-
cause breast tumor intrinsic subtypes have unique mo-
lecular characteristics and different sites of metastasis,
gene expression patterns for lymph node involvement
may vary by subtype, thus gene expression data from
primary breast tumors with and without lymph node
metastases was evaluated by intrinsic subtype to identify
subtype-specific molecular signatures associated with
lymph node status.
Methods
For inclusion in the Clinical Breast Care Project, all pa-
tients met the following eligibility criteria: 1) adult over
the age of 18 years, 2) mentally competent and willing to
provide informed consent, and 3) presenting to the
breast centers with evidence of possible breast cancer.
Tissue and blood samples were collected with approval
from the Walter Reed National Military Medical Center
Human Use Committee and Institutional Review Board.
All subjects voluntarily agreed to participate and gave
written informed consent.
Positive lymph node status was defined as having

micrometastatic (>0.2 mm but ≤ 2.0 mm) or metastatic
(>2.0 mm) lymph node tumors; negative lymph node
status was defined as lymph nodes with isolated tumor
cells (≤0.2 mm) or no detectable tumor cells. Patients
who underwent neoadjuvant therapy and those diag-
nosed with stage IV breast cancer were not included in
this study. Tissue was collected from patients undergoing
surgical procedures, including lumpectomy or mastec-
tomy. Within 5–15 minutes of surgical removal, breast tis-
sue was taken on crushed, wet ice to the pathology
laboratory where a licensed pathologist or pathologists’ as-
sistant performed routine pathology analyses. Two to five
serial sections (8 μm thick) were cut, mounted, stained
and laser microdissected as previously described [15].
Slide preparation, staining and cutting were performed
within 15 minutes to preserve RNA integrity. RNA for
microarray analysis was processed as previously described
[22]. Labeled RNA was hybridized to HG U133A 2.0 ar-
rays (Affymetrix, Santa Clara, CA) according to manufac-
turer’s protocols.
Intrinsic breast subtype was assigned to each tumor

specimen using the BreastPRS™ (Signal Genetics, New
York, NY) as previously described [23,24]. Samples were
classified as one of five subtypes: luminal A, luminal B,
HER2-enriched, basal-like and normal-like. To deter-
mine whether genes were differentially expressed by
lymph node status by subtype, gene expression data was
imported into Partek® Genomics Suite 6.6 (Partek, Inc,
St Louis, MO) and analyzed as previously described [15],
using a false discovery rate (FDR) < 0.05 to define signifi-
cance. Additional analyses were performed using an un-
adjusted P-value to identify any genes differentially
expressed between primary breast tumors without and
without lymph node metastasis.
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Results
Patient and tumor characteristics
Gene expression data was available for 345 tumors: 210
lymph node negative and 135 lymph node positive. Eth-
nicity, age at diagnosis and tumor grade did not differ
significantly by lymph node status, however, patients di-
agnosed with positive lymph nodes (7%) were signifi-
cantly more likely (P < 0.05) to die of disease than those
with negative lymph node status (2%) at diagnosis. The
most common intrinsic subtype was luminal A (51%),
followed by basal-like (27%), HER2-enriched (13%), lu-
minal B (7%) and normal-like (1%) (Figure 1). When
stratified by lymph node status, subtype distribution was
significantly different, with higher frequencies of HER2-
enriched and luminal B subtypes in the lymph node
positive group.

Gene expression differences in primary breast tumors by
lymph node status
Principal component analysis (PCA) did not cluster the
tumors based on lymph node status. Gene expression
analysis of all tumors failed to identify any differentially
expressed genes using FDR < 0.05, with any fold differ-
ence. To determine whether any genes could classify tu-
mors by lymph node status, an unadjusted P-value was
used; seven differentially expressed genes were identified,
however, these genes were not able to effectively cluster
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Figure 1 Distribution of intrinsic subtypes by lymph node status.
Subtype frequencies were significantly different (P < 0.05) between
groups, with lymph node negative tumors (top chart) having a higher
frequency of luminal A tumors while node positive tumors (bottom
chart) had higher frequencies of luminal B and HER2-enriched tumors.
Frequencies of normal-like tumors were <1.0% for each group.
primary tumor specimens (Figure 2). When data were
evaluated by size of metastasis (isolated tumor cells,
micrometastsis or metastasis) or number of positive
nodes (1–3, 4–9 or ≥10) no significant differences were
detected.

Subtype-specific gene expression differences by lymph
node status
Although PCA did not cluster samples by lymph node sta-
tus, it was effective in clustering samples by subtype,
underscoring the significantly different molecular charac-
teristics between tumor subtypes. To determine whether a
signature(s) of lymph node metastasis was detectable
within individual subtypes, data was evaluated for luminal
A (n = 177), luminal B (n = 25), HER2-enriched (n = 47)
and basal-like (n = 94) lymph node negative and lymph
node positive tumors; normal-like tumors (n = 2) were not
evaluated. No significant gene expression differences were
detected within any of the subtypes.

Discussion
Identification of a gene expression signature predictive
of lymph node metastasis would further the evolution of
clinical treatment for breast cancer by allowing for the
determination of nodal status based on molecular char-
acteristics of the primary breast tumor, allowing women
to be spared surgical disruption of the axillary lymph
nodes. In addition, a molecular signature would provide
a tool to determine lymph node status in those patients
not eligible for SLNB and as well as to reduce the false
negative rate of SLNB. No differentially expressed genes
were identified in node negative compared to node posi-
tive tumors either when primary breast tumors were
considered as a whole, or within the four intrinsic sub-
types luminal A, luminal B, HER2-enriched or basal-like.
The inability to identify a signature of lymph node me-

tastasis underscores the complexity of the metastatic
process. Although thousands of cells are disseminated
from a primary breast tumor, growth of metastatic tumors
requires tumor cells to successfully reach the secondary
site, escape senescence and survive and proliferate within
a foreign environment [25,26]. For example, gene expres-
sion patterns in primary breast tumors differ significantly
from matched metastatic lymph node tumors, with genes
expressed in the primary tumor favoring cellular dissemin-
ation, while those in metastatic lymph node tumors are in-
volved in cellular proliferation and survival [27]. In
addition, tumor cells are not self-reliant but rather depend
on a complex interaction with the microenvironment [28].
For example, many signatures of poor prognosis or of me-
tastasis include the expression of stromal genes. Recent
data from our laboratory demonstrated that gene expres-
sion profiles differed in lymph nodes harboring metastatic
breast tumors when compared to negative lymph node



Figure 2 Heat map of node negative and node positive breast tumors. Seven genes (DKK1, IGJ, SCGB1D2, SERPINA1, TFF1, TFF3 and
TMSB15A) were found to be differentially expressed using an unadjusted P-value <0.05 that does not correct for multiple testing. These seven
genes were unable to effectively classify tumors by lymph node status. Tumors from node negative patients are represented by light blue squares
and node positive patients represented by yellow squares.
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tissues and that these differences created an immunotoler-
ant environment promoting cellular proliferation and the
mesenchymal-epithelial transition, all of which favors
tumor growth [29]. Thus, consideration of only the tumor
epithelial component may fail to capture the full meta-
static potential of a primary tumor.
In addition, tumor heterogeneity may confound the

ability to identify a molecular signature of lymph node
metastasis. Primary tumors demonstrate significant het-
erogeneity at the molecular level include expression of
prognostic biomarkers such as ER, PR and HER2,
chromosomal alterations and DNA mutations [30-34].
Evaluation of protein expression within primary tumors
using technologies such as reverse phase protein arrays
also demonstrates intratumoral heterogeneity with a
mean coefficient of variation of 31% within primary tu-
mors [35]. In this study, laser microdissection was uti-
lized to enrich for tumor epithelial cells and reduce
contamination by stromal cells; however, tumor regions
isolated for this study may contain cells with heteroge-
neous molecular profiles and/or different levels of meta-
static potential, thus diluting the ability to detect gene
expression differences associated with metastasis to the
lymph nodes.
In addition to the contribution of the microenviron-

ment to successful metastatic colonization, systemic fac-
tors, such as inherent host susceptibility may affect the
metastatic process. Decreased immunosurveillance and
an increased pro-inflammatory response were character-
istics of lymph nodes harboring metastatic breast tumors
[29]; what remains unknown is whether these alterations
in immune response are local or systemic. Studies in
mouse models suggest that there is a genetic susceptibil-
ity to metastasis as out-crossing of a highly metastatic
mouse to a variety of inbred mouse strains resulted in
significant variability in the propensity to metastasize
[36]; follow-up studies in humans validated the roles of
SIPA1 and RRP1B as metastasis susceptibility genes [37].
Thus, the ability to successfully metastasize may include
systemic as well as tumor/stromal factors.
This study does have limitations. Although gene expres-

sion data was available from 345 primary breast tumors,
only 25 (7%) were of the luminal B subtype. Thus, a gene
signature for lymph node metastasis within the primary
tumor may be present, although such a signature was un-
detected within the other subtypes. In addition, only RNA
was evaluated in this study: DNA alterations or protein
profiles may be effective in discriminating primary tumors
by lymph node status. For example, copy number alter-
ations and were detected at significantly higher levels and
GSTP1 and RAR-beta2 were more likely to be hyper-
methylated in primary tumors with metastatic lymph
nodes compared to those without [38,39], although nei-
ther of these genes demonstrated differential expression
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within our dataset. In addition, protein signatures based
on differentially expressed protein peaks or proteins have
been identified [40,41], although both protein signatures
included pathological characteristics, such as tumor size,
in their predictive model that are known to be predictive
of lymph node metastasis, thus it is not clear whether
these signatures have independent prognostic value.

Conclusions
Significant differences in gene expression levels are not
detectable in lymph node positive compared to lymph
node negative tumors, even within intrinsic subtypes.
The inability to identify a signature of metastasis reflects
the complexities underlying the metastatic process, in
which tumor cells grow and survive only in collaboration
with the microenvironment and against a pro-metastatic
genetic background. Because molecular profiles from
primary tumors cannot predict nodal status, other ave-
nues of investigation, such as how diminished immune
response or genetic susceptibility contribute to metasta-
sis, must be pursued to further the evolution of clinical
care of breast cancer patients.
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