112 research outputs found

    Chemical composition of essential oil of exudates of Dryobalanops aromatica

    Get PDF
    Purpose: To identify the chemical composition of essential oil from the exudates of Dryobalanops aromatica from Malaysia.Methods: Exudate was collected from D. aromatica and subjected to fractional  distillation to obtain essential oil. Gas chromatography-mass spectrometry  (GC-MS) was used to characterize the composition of the isolated essential oil.Results: The yield of essential oil was 7.58 %, with the highest yield (3.24 %) within the first 2 h of fractional distillation. Thirty compounds which accounted for 97.56 % of essential oil composition were identified. These include sesquiterpenes (46.87 %), monoterpenes (31.05 %), oxygenated monoterpenes (16.76 %) and oxygenated  sesquiterpenes (2.13 %). Borneol accounted for 0.74 % of the essential oil.Conclusion: Essential oil from the exudates of D. aromatica contains terpenoid  compounds and borneol.Keywords: Dryobalanops aromatica, exudate, fractional distillation, essential oil, GS-MS, borneo

    Determination of borneol and other chemical compounds of essential oil of Dryobalanops aromatica exudate from Malaysia

    Get PDF
    Purpose: To determine borneol and other chemical compounds of essential oil derived from the exudate of Dryobalanops aromatica in Malaysia.Methods: Exudate was collected from D. aromatica and subjected to fractional distillation to obtain essential oil. Gas chromatography-mass spectrometry (GC-MS) was performed to characterize the composition of the isolated essential oil.Results: Essential oil (7.58 %) was obtained with the highest yield (3.24 %) in the first 2 h of fractional distillation. Thirty compounds which accounted for 97.56 % of total essential oil composition were identified by GC-MS, and they include sesquiterpenes (46.87 %), monoterpenes (31.05 %), oxygenated monoterpenes (16.76 %) and oxygenated sesquiterpenes (2.13 %). Borneol (0.74 %) was also detected in the essential oil.Conclusion: Borneol and other terpenoid compounds are present in the essential oil of the exudate of D. aromatica.Keywords: Exudate, Dryobalanops Aromatica, Fractional distillation, Essential oil, Gaschromatography-mass spectrometry, Borneo

    Examining the impacts of individual lot stormwater detention in a housing estate

    Get PDF
    This paper describes the Storm Water Management Model (SWMM) simulations of three individual lot stormwater detention systems under the car porches of houses. These three systems consist of ready-made modular units presumably fitted under 49 m2 car porches of 204 double-story terrace houses. The 37,032 m2 housing estate is calculated to have 75% of land covered with houses, 25% with roads and other infrastructures. The housing estate was subjected to 5-minute, 10-year Average Recurrent Interval (ARI) short-duration design rainfall. The model predicted that all three systems could reduce the peak runoff at outfall from 2.79 to 0.38 m3/s. It indicated that any of the system could cause 86% reduction of the runoff for the whole housing estate. In order to differentiate the performance of the three systems, the housing lot was further investigated. When Type 1 system (1.15 m high with 49 m3 per lot) was analysed by the SWMM model, only 8% of its storage volume was filled that highlights an over design. Type 2 system (0.3 m high with 6 m3 per lot) modelled at 84% while Type 3 system (0.3 m high with 9 m3 per lot), at 54%. The difference in heights between the systems explained the low percentage of filling for the Type 1 system. Comparing Type 2 and Type 3, concrete structure within Type 3 had only half of its volume filled. In this light, the Type 2 system made of polyethylene pieces was found the most efficient in lowering post-development peak runoff

    Testing the Concept of Mitigating Urban Flooding with Permeable Road: Case Study of Tong Wei Tah Street, Kuching City, Sarawak, Malaysia

    Get PDF
    This paper describes the investigation of permeable road as a mitigation measure for urban flooding. The study involves the reconstruction of a historical case of inundation, namely the 11 December 2019 flood event along the Tong Wei Tah Street in Greater Kuching City, Sarawak, Malaysia. The Storm Water Management Model version 5.0 was used as the platform to describe the flooding at the selected site and the functionality of permeable road to alleviate flooding. A permeable road with a dimension of 200 m long, 6 m wide and 1 m deep was used to simulate runoff after a structure was installed along the whole stretch of Tong Wei Tah Street. The model results show that flooding was caused by a backwater effect in the drainage system. Models predicted 0.1 to 0.5 m flood depths which matched the observed 0.3 m flood depth account of a local resident. The permeable road exhibited capability to absorb all the out-of-drain floodwaters, leaving no water due to the 11 December 2019 flood on the street. Modelling efforts demonstrated that the floodwater hydrographs in the drain rose and fell within 7 hours, while the underground storage, filled and drained within 13 hours. Moreover, the storage of permeable road was found to fill up to 75%, reserving the unfilled 25% for adverse weathers

    Engineering serendipity: high-throughput discovery of materials that resist bacterial attachment

    Get PDF
    Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood, limiting the ab initio design and engineering of biomaterials to control bacterial attachment. Combinatorial approaches involving high-throughput screening have emerged as key tools for identifying materials to control bacterial attachment. The hundreds of different materials assessed using these methods can be carried out with the aid of computational modelling. This approach can develop an understanding of the rules used to predict bacterial attachment to surfaces of non-toxic synthetic materials. Here we outline our view on the state of this field and the challenges and opportunities in this area for the coming years

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe
    corecore