126 research outputs found

    Prospective association between handgrip strength and cardiac structure and function in UK adults.

    Get PDF
    BACKGROUND: Handgrip strength, a measure of muscular fitness, is associated with cardiovascular (CV) events and CV mortality but its association with cardiac structure and function is unknown. The goal of this study was to determine if handgrip strength is associated with changes in cardiac structure and function in UK adults. METHODS AND RESULTS: Left ventricular (LV) ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), mass (M), and mass-to-volume ratio (MVR) were measured in a sample of 4,654 participants of the UK Biobank Study 6.3 ± 1 years after baseline using cardiovascular magnetic resonance (CMR). Handgrip strength was measured at baseline and at the imaging follow-up examination. We determined the association between handgrip strength at baseline as well as its change over time and each of the cardiac outcome parameters. After adjustment, higher level of handgrip strength at baseline was associated with higher LVEDV (difference per SD increase in handgrip strength: 1.3ml, 95% CI 0.1-2.4; p = 0.034), higher LVSV (1.0ml, 0.3-1.8; p = 0.006), lower LVM (-1.0g, -1.8 --0.3; p = 0.007), and lower LVMVR (-0.013g/ml, -0.018 --0.007; p<0.001). The association between handgrip strength and LVEDV and LVSV was strongest among younger individuals, while the association with LVM and LVMVR was strongest among older individuals. CONCLUSIONS: Better handgrip strength was associated with cardiac structure and function in a pattern indicative of less cardiac hypertrophy and remodeling. These characteristics are known to be associated with a lower risk of cardiovascular events

    Vitamins and minerals for women: recent programs and intervention trials

    Get PDF
    Women's nutrition has received little attention in nutrition programming, even though clinical trials and intervention trials have suggested that dietary improvement or supplementation with several nutrients may improve their health, especially in low-income settings, the main focus of this paper. Most attention so far has focused on how improvements in maternal nutrition can improve health outcomes for infants and young children. Adequate vitamin D and calcium nutrition throughout life may reduce the risk of osteoporosis, and calcium supplementation during pregnancy may reduce preeclampsia and low birth weight. To reduce neural tube defects, additional folic acid and possibly vitamin B12 need to be provided to non-deficient women before they know they are pregnant. This is best achieved by fortifying a staple food. It is unclear whether maternal vitamin A supplementation will lead to improved health outcomes for mother or child. Iron, iodine and zinc supplementation are widely needed for deficient women. Multimicronutrient supplementation (MMS) in place of the more common iron-folate supplements given in pregnancy in low-income countries may slightly increase birth weight, but its impact on neonatal mortality and other outcomes is unclear. More sustainable alternative approaches deserve greater research attention

    Efficacy of different strategies to treat anemia in children: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anemia continues to be a major public health problem among children in many regions of the world, and it is still not clear which strategy to treat it is most effective.</p> <p>Objective</p> <p>To evaluate the efficacy and children's acceptance of several recognized strategies to treat anemia.</p> <p>Methods</p> <p>Non-breastfed children (n = 577), 6 to 43 mo of age, were screened for the trial; 267 were anemic (hemoglobin < 11.7 g/dL), and 266 of those were randomized into 1 of 5 treatments to received daily either: an iron supplement (IS), an iron+folic acid supplement (IFS), a multiple micronutrient supplement (MMS), a micronutrient-fortified complementary food as porridge powder (FCF), or zinc+iron+ascorbic acid fortified water (FW). The iron content of each daily dose was 20, 12.5, 10, 10 and 6.7 mg respectively. Hemoglobin (Hb), ferritin, total iron, weight and height were measured at baseline and after 4 months of treatment. Morbidity, treatment acceptability and adherence were recorded during the intervention.</p> <p>Results</p> <p>All treatments significantly increased Hb and total iron concentration; ferritin did not change significantly. Groups MMS, IS and IFS increased Hb (g/dL) [1.50 (95%CI: 1.17, 1.83), 1.48 [(1.18, 1.78) and 1.57 (1.26, 1.88), respectively] and total iron ((μg/dL) [0.15 (0.01, 0.29), 0.19 (0.06, 0.31) and 0.12(-0.01, 0.25), respectively] significantly more than FCF [0.92 (0.64, 1.20)] but not to FW group [0.14 (0.04, 0.24)]. The prevalence of anemia was reduced to a greater extent in the MMS and IFS groups (72% and 69%, respectively) than in the FCF group (45%) (p < 0.05). There were no significant differences in anthropometry or in the number of episodes of diarrhea and respiratory infections among treatment groups. The supplements MMS and IS were less acceptable to children, than IFS, FCF and FW.</p> <p>Conclusion</p> <p>The three supplements IS, ISF and MMS increased Hb more than the FCF; the supplements that contained micronutrients (IFS and MMS) were more effective for reducing the prevalence of anemia. In general, fortified foods were better accepted by the study participants than supplements.</p> <p>ClinicalTrial.gov Identifier</p> <p>NCT00822380</p

    Generation expansion planning optimisation with renewable energy integration: A review

    Get PDF
    Generation expansion planning consists of finding the optimal long-term plan for the construction of new generation capacity subject to various economic and technical constraints. It usually involves solving a large-scale, non-linear discrete and dynamic optimisation problem in a highly constrained and uncertain environment. Traditional approaches to capacity planning have focused on achieving a least-cost plan. During the last two decades however, new paradigms for expansion planning have emerged that are driven by environmental and political factors. This has resulted in the formulation of multi-criteria approaches that enable power system planners to simultaneously consider multiple and conflicting objectives in the decision-making process. More recently, the increasing integration of intermittent renewable energy sources in the grid to sustain power system decarbonisation and energy security has introduced new challenges. Such a transition spawns new dynamics pertaining to the variability and uncertainty of these generation resources in determining the best mix. In addition to ensuring adequacy of generation capacity, it is essential to consider the operational characteristics of the generation sources in the planning process. In this paper, we first review the evolution of generation expansion planning techniques in the face of more stringent environmental policies and growing uncertainty. More importantly, we highlight the emerging challenges presented by the intermittent nature of some renewable energy sources. In particular, we discuss the power supply adequacy and operational flexibility issues introduced by variable renewable sources as well as the attempts made to address them. Finally, we identify important future research directions

    Global burden of disease due to smokeless tobacco consumption in adults : analysis of data from 113 countries

    Get PDF
    BACKGROUND: Smokeless tobacco is consumed in most countries in the world. In view of its widespread use and increasing awareness of the associated risks, there is a need for a detailed assessment of its impact on health. We present the first global estimates of the burden of disease due to consumption of smokeless tobacco by adults. METHODS: The burden attributable to smokeless tobacco use in adults was estimated as a proportion of the disability-adjusted life-years (DALYs) lost and deaths reported in the 2010 Global Burden of Disease study. We used the comparative risk assessment method, which evaluates changes in population health that result from modifying a population's exposure to a risk factor. Population exposure was extrapolated from country-specific prevalence of smokeless tobacco consumption, and changes in population health were estimated using disease-specific risk estimates (relative risks/odds ratios) associated with it. Country-specific prevalence estimates were obtained through systematically searching for all relevant studies. Disease-specific risks were estimated by conducting systematic reviews and meta-analyses based on epidemiological studies. RESULTS: We found adult smokeless tobacco consumption figures for 115 countries and estimated burden of disease figures for 113 of these countries. Our estimates indicate that in 2010, smokeless tobacco use led to 1.7 million DALYs lost and 62,283 deaths due to cancers of mouth, pharynx and oesophagus and, based on data from the benchmark 52 country INTERHEART study, 4.7 million DALYs lost and 204,309 deaths from ischaemic heart disease. Over 85 % of this burden was in South-East Asia. CONCLUSIONS: Smokeless tobacco results in considerable, potentially preventable, global morbidity and mortality from cancer; estimates in relation to ischaemic heart disease need to be interpreted with more caution, but nonetheless suggest that the likely burden of disease is also substantial. The World Health Organization needs to consider incorporating regulation of smokeless tobacco into its Framework Convention for Tobacco Control

    The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions

    Get PDF
    UK Biobank is a population-based cohort of half a million participants aged 40–69 years recruited between 2006 and 2010. In 2014, UK Biobank started the world’s largest multi-modal imaging study, with the aim of re-inviting 100,000 participants to undergo brain, cardiac and abdominal magnetic resonance imaging, dual-energy X-ray absorptiometry and carotid ultrasound. The combination of large-scale multi-modal imaging with extensive phenotypic and genetic data offers an unprecedented resource for scientists to conduct health-related research. This article provides an in-depth overview of the imaging enhancement, including the data collected, how it is managed and processed, and future direction

    RNA interference approaches for treatment of HIV-1 infection

    Get PDF
    HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery

    Pediatric T-cell acute lymphoblastic leukemia

    Get PDF
    The most common pediatric malignancy is acute lymphoblastic leukemia (ALL), of which T-cell ALL (T-ALL) comprises 10–15% of cases. T-ALL arises in the thymus from an immature thymocyte as a consequence of a stepwise accumulation of genetic and epigenetic aberrations. Crucial biological processes, such as differentiation, self-renewal capacity, proliferation, and apoptosis, are targeted and deranged by several types of neoplasia-associated genetic alteration, for example, translocations, deletions, and mutations of genes that code for proteins involved in signaling transduction, epigenetic regulation, and transcription. Epigenetically, T-ALL is characterized by gene expression changes caused by hypermethylation of tumor suppressor genes, histone modifications, and miRNA and lncRNA abnormalities. Although some genetic and gene expression patterns have been associated with certain clinical features, such as immunophenotypic subtype and outcome, none has of yet generally been implemented in clinical routine for treatment decisions. The recent advent of massive parallel sequencing technologies has dramatically increased our knowledge of the genetic blueprint of T-ALL, revealing numerous fusion genes as well as novel gene mutations. The challenges now are to integrate all genetic and epigenetic data into a coherent understanding of the pathogenesis of T-ALL and to translate the wealth of information gained in the last few years into clinical use in the form of improved risk stratification and targeted therapies. Here, we provide an overview of pediatric T-ALL with an emphasis on the acquired genetic alterations that result in this disease
    corecore