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The most common pediatric malignancy is acute lymphoblastic leukemia (ALL), of which T-

cell ALL (T-ALL) comprises 10-15% of cases. T-ALL arises in the thymus from an immature 

thymocyte as a consequence of a stepwise accumulation of genetic and epigenetic aberrations. 

Crucial biological processes such as differentiation, self-renewal capacity, proliferation, and 

apoptosis are targeted and deranged by several types of neoplasia-associated genetic 

alteration, for example translocations, deletions, and mutations of genes that code for proteins 

involved in signaling transduction, epigenetic regulation, and transcription. Epigenetically, T-

ALL is characterized by gene expression changes caused by hypermethylation of tumor 

suppressor genes, histone modifications, and miRNA and lncRNA abnormalities. Although 

some genetic and gene expression patterns have been associated with certain clinical features, 

such as immunophenotypic subtype and outcome, none has of yet generally been 

implemented in clinical routine for treatment decisions. The recent advent of massive parallel 

sequencing technologies has dramatically increased our knowledge of the genetic blueprint of 

T-ALL, revealing numerous fusion genes as well as novel gene mutations. The challenges 

now are to integrate all genetic and epigenetic data into a coherent understanding of the 

pathogenesis of T-ALL and to translate the wealth of information gained in the last few years 

into clinical use in the form of improved risk stratification and targeted therapies. Here, we 

provide an overview of pediatric T-ALL with an emphasis on the acquired genetic alterations 

that result in this disease. 
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A BRIEF HISTORICAL BACKGROUND 

“Several cases exist with a great excess of white blood cells (…) Blood of such patients contains so many 

white blood cells that at first glance I thought they contained purulent matter. In fact I believe the excess 

of white blood cells is due to an arrest of maturation of blood. From my theory on the origin of blood 

cells, the overabundance of white blood cells should be the result of an arrest of the development of 

intermediate cells.”  

This was written in 1844 by the French physician Alfred Donné, a pioneer in using 

microscopic examinations for the study of disease (Degos, 2001). Donné examined the blood 

from patients with splenomegaly and noted that what had previously been thought of as “pus 

in the blood” was in fact leukocytosis. He suggested, quite presciently, that the excess of 

white blood cells (WBC) could be due to a maturation arrest (Donné, 1844; Degos, 2001). 

However, the first reports recognizing leukemia as a distinct clinical entity are more often 

attributed to John Hughes Bennett and Rudolf Virchow. In 1845, Bennett, a professor at the 

Institutes of Medicine in Edinburgh, performed an autopsy on a 28-year-old man with 

hepatosplenomegaly. He published an extensive post mortem report, in which he proposed 

that the peripheral blood (PB) abnormalities were independent of inflammation, concluding 

that the patient had had a systemic blood disorder. Bennett called it leucocythemia (Bennett, 

1845; Piller, 2001). A few months later, Virchow, a German pathologist at the Charité 

Hospital in Berlin, reported similar findings based on an autopsy on a 50-year-old woman 

with edema, splenomegaly, and nose bleeding. When examining the PB, a skewed distribution 

of erythrocytes and WBC compared with normal blood was found. His initial publication was 

entitled “Weisses Blut” (“white blood”) but in a paper a few years later, Virchow named the 

disease “Leukämie” (from Greek leukos “clear, white” and haima “blood”) (Virchow, 1845, 

1848). 

The first case of pediatric leukemia was reported in 1850 by Henry William Fuller, who 

described a 9-year-old girl presenting at the St George’s Hospital in London with frequent 

hemorrhages, enlarged spleen, and leukocytosis; she died after a few months. Although 

subsequently often believed that she had had acute leukemia, a later review of Fuller ̕s 
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detailed notes suggests that she actually may have had chronic myeloid leukemia (Fuller, 

1850; Piller, 2001). In fact, the distinction between acute and chronic leukemia was first made 

seven years after Fuller’s publication by Nikolaus Friedrich and leukemias originating from 

myeloid and lymphoid lineages were not distinguished until almost 30 years later by Paul 

Ehrlich (Friedrich, 1857; Ehrlich, 1879; Piller, 2001). Interestingly, the relatively high 

prevalence of acute leukemia in children was not recognized until 1917 when an 

epidemiological survey on 1,457 cases of leukemia was performed by Gordon Ward while 

serving as a medical officer with the Royal Army Medical Corps (Ward, 1917). 

More than 50 years later, in 1973, Drs. Luis Borella and Luisa Sen, both at St. Jude 

Children’s Research Hospital in Memphis, described a 7-year-old boy with ALL who had a 

pronounced leukocytosis, with the lymphoblasts displaying T-cell surface markers, and 

hepatosplenomegaly (but with no clinical or radiologic evidence of thymic enlargement); two 

years later, they established that T-ALL is a clinically as well as biologically distinct disease 

entity (Borella and Sen, 1973; Sen and Borella, 1975). Thus, T-ALL is a surprisingly recent 

member of the acute leukemia group. 

 

THE PLACE AND CELL OF ORIGIN 

The thymus is a mediastinal organ located right behind the sternum. During the early 

years of life, the thymus is prominent but with increasing age a loss of tissue mass and 

structure takes place, a process called involution (Shanley et al., 2009). The ancient Greeks 

knew about the thymus − the name is believed to derive either from the Greek word thumos, 

meaning spirit, soul, and courage, or from the plant Thymus vulgaris, possibly due to a vague 

resemblance of the thymus to the leaf of the common thyme (Lavini, 2008). However, the 

function of the thymus remained elusive for centuries. It was not until the early 1960s that 

Jacques Miller, at the Chester Beatty Research Institute in London, showed that the thymus 
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plays a major role in lymphopoiesis and that it performs an important immunological function 

(Miller, 1961). Today, it is well known that the thymus orchestrates the complex symphony of 

the T-cell differentiation process that results in functional, self-tolerant T-cells (Miller, 2011). 

The thymus is dependent upon the input of progenitor cells, thymocytes, from the bone 

marrow (BM). Early thymic progenitors – the most immature thymocytes – enter the thymus, 

make a loop through the outer cortex, and then return to the inner medulla. During this 

journey throughout the thymus, maturation occurs, as manifested by the assembly of the T-

cell receptor (TCR) genes (Figs. 1A and 2). This differentiation route is highly intricate – 

somatic rearrangements of the TCR genes must be completed and the functionality and 

tolerance of the TCRs need to be scrutinized by both positive and negative selection (Fig. 

1A). The mature T-cells exit the thymus and begin to circulate in the blood as well as through 

different lymphatic and non-lymphatic organs (Fig. 1C). However, less than 5% of the 

thymocytes generated in the thymus leave as mature T-cells – this loss of more than 95% of 

aspiring thymocytes is the price we have to pay for an effective, self-tolerant immune defense 

(Egerton et al., 1990). 

Acquired genetic and epigenetic changes in an immature thymocyte result in either T-

ALL or T-cell lymphoblastic lymphoma (T-LBL) (Fig. 1B), both of which are included as T 

lymphoblastic leukemia/lymphoma in the World Health Organization classification 

(Swerdlow et al., 2008). T-ALL and T-LBL are usually considered to be different 

manifestations of the same disease, with the extent of BM involvement being the main feature 

to distinguish T-ALL (>25% BM blasts) from T-LBL; the latter corresponds to a nodal 

distribution of the disease, often with a large mediastinal mass, with no or minimal signs of 

PB or BM involvement. However, even though these entities display overlapping clinical and 

immunophenotypic features, some studies have identified distinct gene expression profiles, 
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indicating a greater biological difference between T-ALL and T-LBL than previously 

surmised (Basso et al., 2011). 

 

SYMPTOMS AND SIGNS 

The malignant clone arising in the thymus proliferates and propagates throughout the 

body, mainly in the BM, PB, lymph nodes, and central nervous system (CNS) (Fig. 1D). This 

spread results in the signs and symptoms associated with T-ALL, such as suppressed BM 

function, leukocytosis, neurological abnormalities, and respiratory difficulties. 

The expansion of immature lymphoblasts in the BM represses hematopoiesis, resulting 

in a deficiency of normal PB cells. Fever, recurrent infections, fatigue, paleness, and 

skin/mucosal bleeding are frequent, and so are bone pain and arthralgia (Bernbeck et al., 

2009). A mediastinal mass (~60%) and CNS involvement (~10%) are common in T-ALL and 

result in dyspnea, headache, nausea, and visual impairment. T-ALL is characterized by a high 

WBC count (median 60-70 x 109/l) and peripheral lymphoblasts; almost 50% of patients have 

hyperleukocytosis (>100 x 109/l) (Bernbeck et al., 2009; Karrman et al., 2009a; Toft et al., 

2013). The latter is associated with neurological (headache, mental changes, seizures, and 

brain hemorrhage), pulmonary (respiratory symptoms, hypoxia, and pulmonary infiltrates on 

X-ray), and metabolic (tumor lysis syndrome: hyperuricemia, hyperkalemia, and 

hyperphosphatemia) complications. 

 

IMMUNOPHENOTYPIC FEATURES 

Because T-ALL and B-cell precursor (BCP) ALL lymphoblasts are morphologically 

indistinguishable, immunophenotypic analyses are essential to identify the lineage involved 

(Swerdlow et al., 2008). The common immunophenotypic theme of T-ALL is the expression 

of a set of intracellular or cell surface antigens, collectively termed T-cell markers. CD3, 
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expressed in the cytoplasm or on the cell surface, is T-lineage specific and hence of great 

diagnostic importance. CD3 associates with membrane-bound TCRs resulting in TCR 

complexes, the functionality of which is necessary for the intrathymic survival of T-cells. The 

DNA polymerase terminal deoxynucleotidyl transferase (TdT) is usually expressed in T-

lymphoblasts and so are, variably, CD1a, CD2, CD4, CD5, CD7, and CD8, involved in 

antigen presentation (CD1), cell-cell interactions and adhesion (CD2 and CD7), assisting the 

TCR receptor (CD4 and CD8), and modulating immune response (CD5). In addition, aberrant 

expression of one or both of the myeloid-associated CD13 and CD33 is seen in 20-30% of 

cases (Swerdlow et al., 2008). 

As normal thymocytes mature, they are characterized by a change in the expression of 

CD markers; to some extent, the immunophenotypic features of T-ALL lymphoblasts mirror 

the normal, physiological maturation process. The constellation of CD markers in a T-ALL 

case may hence suggest at which stage the leukemic differentiation block occurred (Berquam-

Vrieze et al., 2011). Four subgroups of T-ALL have been defined according to their CD 

patterns: 1) pro-T (T-I): cCD3+/CD7+/CD2-/CD1a-/CD34+/-; 2) pre-T (T-II): 

cCD3+/CD7+/CD2+/CD1a-/CD34+/-; 3) cortical T (T-III): 

cCD3+/CD7+/CD2+/CD1a+/CD34-; and 4) medullary T (T-IV): cCD3+/CD7+/CD2+/CD1a-

/CD34-/membrane CD3+. These differ slightly prognostically in the sense that pro- and pre-

T-ALL cases tend to have a worse and the cortical and medullary subtypes a better outcome 

(Schrappe et al., 2011). The T-I and T-II stages are double negative for CD4 and CD8 and the 

T-III is double positive for CD4 and CD8, whereas the more mature T-IV is single positive 

for either CD4 or CD8 (Bene et al., 1995; Swerdlow et al., 2008). T-ALL cases corresponding 

to specific stages often display a gene expression profile resulting from deregulation of a 

particular oncogene, such as MEF2C, TLX1 (a.k.a. HOX11), and TAL1 in the immature, early, 

and late cortical stages, respectively (Ferrando et al., 2002; Homminga et al., 2011). Thus, 
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gene expression patterns can be used, albeit indirectly, to identify underlying, 

pathogenetically important genetic changes. 

A recently delineated subtype of T-ALL – the early T-cell precursor ALL (ETP ALL) − 

is thought to originate from the earliest thymic immigrants; however, some data suggest a 

more differentiated cell of origin (Berquam-Vrieze et al., 2011). ETP ALL cases, which 

comprise 5-15% of T-ALL, display a unique constellation of cell surface markers: CD1a-

/CD8-/CD5(+)/cCD3+/CD7+ and expression of one or more of the myeloid- or stem cell-

associated markers, CD13, CD33, CD34, CD117, HLA-DR, CD11b, and CD65. Interestingly, 

the gene expression profiles of ETP ALL are similar to those of hematopoietic stem cells and 

myeloid progenitors and, furthermore, ETP ALL cases frequently harbor mutations in genes 

commonly mutated in acute myeloid leukemia, such as DNMT3A, ETV6, FLT3, GATA3, 

IDH1, IDH2, JAK3, NRAS, and RUNX1 (Zhang et al., 2012; Haydu and Ferrando, 2013). 

Initially, patients with ETP ALL were considered to have a very dismal prognosis but more 

recently, using current treatment strategies, the outcome has improved (Coustan-Smith et al., 

2009; Patrick et al., 2014; Conter et al., 2016). 

 

TCR REARRANGEMENTS 

The TCR genes in T-cells are, similar to the immunoglobulin genes (IG) in B-cells, 

rearranged in a specific order during the differentiation process, starting with TRD (at 14q11.2 

coding for δ protein), followed by TRG (7p14.1, γ protein), TRB (7q34, β protein), and TRA 

(14q11.2, α protein). Recombination of TRA leads to deletion of TRD because it is located 

within TRA (Fig. 2). Each T-cell harbors a unique TCR rearrangement, like a DNA 

fingerprint, due to combinatorial and junctional diversification during the V(D)J 

recombination process (Nemazee, 2006). Because T-ALL is a clonal disease, an identical TCR 

rearrangement, initially generated in the ancestral cell, will be present in all lymphoblasts. 
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Hence, in contrast to an inflammatory process that gives rise to a polyclonal T-cell response, 

the malignant T-cells display TCR monoclonality, which can be used as a leukemic marker in 

minimal residual disease (MRD) monitoring. Although the monoclonal legitimate TCR 

rearrangement as such does not participate in the pathogenesis of T-ALL, a recent study 

showed that persistent TCR signaling possesses a potent tumor-suppressive function, a 

property which may prove suitable for therapeutic interventions (Trinquand et al., 2016). 

More than 90% of T-ALL cases carry at least one monoclonal rearrangement, most often 

involving TRG and TRB (Kraszewska et al., 2012). In a small subset of cases, however, there 

is no biallelic TRG rearrangement; this represents an immature form of T-ALL associated 

with a poor outcome (Szczepański et al., 2000; Gutierrez et al., 2010a). Cases without TRG 

rearrangements partially overlap with ETP ALL in the sense that such rearrangements also are 

infrequent in ETP ALL; furthermore, the gene expression profiles are similar in the two 

groups. However, although they express some CD markers in common, the former cases only 

rarely meet the immunophenotypic criteria for ETP ALL (Coustan-Smith et al., 2009; 

Gutierrez et al., 2010a).  

It should be stressed that cross-lineage IG rearrangements occur in 10-20% of T-ALL 

and TCR rearrangements are found in up to 70% of BCP ALL; thus, their presence cannot be 

used for lineage assignment (Swerdlow et al., 2008). 

 

EPIDEMIOLOGY AND ETIOLOGY 

Epidemiology 

Leukemia is the most common pediatric cancer, accounting for one-third of all cases, 

with an incidence of ~4/100,000 children/year. The vast majority (80-85%) is ALL, of which 

T-ALL comprises 10-15% (Hjalgrim et al., 2003; Siegel et al., 2012). Patient characteristics 

differ between BCP ALL and T-ALL. The former has a marked incidence peak between 2 and 
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5 years of age, with a male/female ratio of 1.2, whereas the latter has a flatter incidence curve, 

with a median age of 9 years, and a marked male predominance – boys have a threefold 

increased risk of T-ALL (Schneider et al., 2000; Hjalgrim et al., 2003; Ballerini et al., 2008; 

Karrman et al., 2009a). The reasons for the age difference between BCP ALL and T-ALL are 

not fully understood, but the fact that prenatal initiation of pediatric BCP ALL is common 

whereas genetic changes in T-ALL only rarely arise in utero may partly explain the later 

occurrence of T-ALL (Ford et al., 1997; Gale et al., 1997; Fischer et al., 2007; Eguchi-

Ishimae et al., 2008; Mansur et al., 2015). As to the skewed gender distribution, the reason(s) 

for this is unknown, although inactivating mutations or deletions of X-linked tumor 

suppressor genes have been suggested to play a role. Possible candidate genes include 

KDM6A (a.k.a. UTX) at Xp11.3, PHF6 at Xq26.2, and RPL10 at Xq28, which code for lysine 

(K)-specific demethylase 6A, PHD finger protein 6, and ribosomal protein L10, respectively. 

However, both PHF6 and RPL10 appear to undergo X inactivation in females (Ariës and 

Gutierrez, 2015), making them less likely to be involved in the preponderance of males with 

T-ALL. In contrast, KDM6A, which is preferentially mutated in male T-ALL cases, escapes X 

inactivation and could hence contribute to the gender bias (Van Vlierberghe et al., 2010; De 

Keersmaecker et al., 2013; Van der Meulen et al., 2015). 

 

Etiology 

Etiological studies have mainly focused on BCP and mature B-cell ALL – the relatively 

low incidence of T-ALL makes it difficult to obtain robust etiological data for this subtype. 

This notwithstanding, investigations of causative mechanisms for BCP ALL may, at least to 

some extent, be relevant also to T-ALL, given that both diseases originate from hematopoietic 

progenitor cells. 
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Environmental Exposures 

The only definite external cause of ALL is ionizing radiation (Wakeford, 2008). Thus, 

both pre- and postnatal exposures are now kept to a minimum – irradiation should hence not 

contribute significantly to cases occurring today. Several other risk factors have been 

proposed, such as parental smoking, paint and household chemicals, pesticides, maternal diet, 

traffic fumes, and electric fields, but so far none has been shown convincingly to add to the 

incidence of childhood ALL (Eden, 2010). That infections and/or the body’s response to them 

may promote leukemia development has been postulated in two separate, albeit somewhat 

overlapping, theories: “population mixing” and “delayed-infection” (Kinlen, 2004; Greaves, 

2006). Circumstantial evidence for the “delayed-infection” hypothesis comes from 

investigations showing that children who are exposed to common infections at an early age, 

measured by proxy as day-care attendance and antibiotic prescriptions, have a reduced risk of 

ALL (Urayama et al., 2010; Gradel and Kærlev, 2015). It should be emphasized, however, 

that these studies were mainly based on BCP ALL cases. 

A rare cause of T-ALL has, unfortunately, been shown to be iatrogenic. A number of 

children with immunodeficiency syndromes treated by retrovirus-mediated gene therapy 

subsequently developed T-ALL. This could be attributed to vectors integrating near 

oncogenes, most commonly LMO2, resulting in deregulated expression of the target genes, 

akin to the effect of TCR translocations in T-ALL, as discussed below (Hacein-Bey-Abina et 

al., 2003; Braun et al., 2014). Needless to say, this dampened the enthusiasm for gene therapy 

quite dramatically, putting the entire field under close scrutiny. 

 

Genetic Predisposition 

Is there an inherent difference among children as to how susceptible they are to develop 

ALL? Although a few syndromes due to germline mutations in high penetrance genes do 
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confer an increased risk of ALL, such as ataxia-telangiectasia, caused by mutations in the cell 

cycle checkpoint serine/threonine protein kinase gene ATM at 11q22.3 and associated with T-

ALL, hereditary syndromes are a rare cause of ALL (Seif, 2011). However, a study of late T-

ALL relapses, occurring ≥2.5 years after diagnosis, revealed that the leukemia- and clone-

specific markers were completely different between diagnosis and recurrence in eight of the 

22 investigated cases, suggestive of new primary T-ALLs rather than relapses (Szczepański et 

al., 2011). One explanation for this could be that patients with two “separate” T-ALLs are 

genetically predisposed to develop this disease; indeed, one of the patients in that study 

harbored a constitutional del(11)(p12p13), previously associated with T-ALL as an acquired 

abnormality (Van Vlierberghe et al., 2006). However, the existence of a pre-leukemic, 

ancestral clone could also give rise to two seemingly distinct leukemias (Shlush et al., 2014). 

This possibility can of course be addressed by next generation sequencing (NGS) analyses of 

paired samples in order to find identical mutations in the “different” leukemias (Kunz et al., 

2015). 

Although constitutional high penetrance alleles are a rare cause of ALL, frequent but 

low-penetrant alleles may play a role. Indeed, genome-wide association studies have 

identified several polymorphisms in genes, such as ARID5B (located in 10q21.2), CDKN2A 

(9p21.3), CEBPE (14q11.2), GATA3 (10p14), IKZF1 (7p12.2), and PIP4K2A (10p12.2), that 

influence the risk, albeit with low impact, of childhood ALL. However, these polymorphisms 

have primarily been associated with an increased risk of BCP ALL; in fact, only CDKN2A 

polymorphisms have been clearly associated with T-ALL to date (Papaemmanuil et al., 2009; 

Treviño et al., 2009; Sherborne et al., 2010; Perez-Andreu et al., 2013; Xu et al., 2013). 

If genetic and/or environmental risk factors play a role in the etiology of ALL, one 

would expect that siblings of children with ALL would have an increased risk of this disease 

but that is generally not the case (Winther et al., 2001). However, a few studies have indicated 
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an ALL-subtype concordance among siblings affected by multiple cases of pediatric ALL 

(Mansur et al., 2011; Schmiegelow et al., 2012). Notably, Schmiegelow et al. (2012) found 

that in five of the six families reported where the first case was T-ALL, the subsequent case 

(or cases) was also T-ALL. This indicates that certain, but presently unknown, 

etiologic/genetic factors may be specific for T-ALL. 

 

SURVIVAL AND MRD 

The survival rates of childhood ALL have improved dramatically since the 1960s, when 

only 5-10% of patients were cured (Pui and Evans, 2013); at present, the probabilities of 5-

year event-free survival and overall survival for BCP ALL exceed 80% and 90%, respectively 

(Pui et al., 2015). However, the event-free and overall survival for children, adolescents, and 

younger adults with T-ALL is generally inferior, just over 70% and 80%, respectively (Table 

1), with relapsed T-ALL having a particularly dismal outcome (~20%). Hopefully, treatment 

that targets specific leukemia-specific mutations, many of which are now being identified by 

NGS, will improve the prognosis (Roti and Stegmaier, 2014). 

Considering the poor survival after relapse, it is of vital importance to identify patients 

already early on during treatment who are at increased risk of such an event. Thus, MRD 

monitoring has proved important to evaluate the effect of the treatment given, thereby 

assessing the risk of relapse. MRD analysis can, in principle, be performed by three different 

approaches: 1) real-time quantitative PCR (qPCR) analyses of monoclonal IG/TCR 

rearrangements; 2) flow cytometric detection of aberrant leukemic immunophenotypes; and 3) 

qPCR analyses of leukemia-specific fusion genes and/or gene mutations. The latter approach 

is seldom used in T-ALL because only a minority of cases carries a suitable target (van 

Dongen et al., 2015). Furthermore, because detection of MRD by flow cytometry has proved 

less sensitive than qPCR in T-ALL (Vaitkevičienė et al., 2011), MRD evaluation in clinical 
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routine is most often done by qPCR analyses of the TCR genes (Bandapalli et al., 2013; 

Jenkinson et al., 2013; Toft et al., 2013). The methodological sensitivity of qPCR is 

somewhere between 10-4 and 10-5, i.e., one leukemic cell among 10,000-100,000 normal cells 

can be detected (Teachey and Hunger, 2013). The importance of MRD analyses is clearly 

exemplified by the AIEOP-BFM-ALL 2000 study that showed that MRD ≥10-3 at day 79 

constituted the most powerful predictor for relapse of T-ALL (Schrappe et al., 2011). 

 

GENETICS OF T-ALL 

In the last decade, it has become evident that both genetic and epigenetic abnormalities 

play an essential role in the leukemogenic process underlying T-ALL, as will be reviewed in 

the following paragraphs.  

 

Karyotypic Features 

Conventional chromosome banding analyses reveal clonal abnormalities in 55-75% of 

T-ALL cases (Table 2), a frequency clearly lower than that of 85-90% in childhood BCP ALL 

(Zachariadis et al., 2011). However, the proportion of aberrant T-ALL increases quite 

substantially if interphase fluorescence in situ hybridization (FISH) or single nucleotide 

polymorphism array (SNP-A) analyses are performed (Karrman et al., 2015). Hence, 

chromosomal changes in T-ALL often escape cytogenetic detection. The reasons for this are 

manifold, including poor chromosome morphology, analysis of non-neoplastic dividing BM 

cells, and the presence of cytogenetically cryptic abnormalities, such as deletions and 

duplications <5-10 Mb and translocations involving chromosome bands of similar size and 

banding pattern. 

 

Modal Chromosome Number Distribution 
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Close to 70% of karyotypically abnormal pediatric T-ALL cases have 46 chromosomes, 

i.e., they are pseudodiploid; the modal chromosome numbers of most other cases are 45 or 47-

49 (Fig. 3A). Thus, the ploidy groups that constitute specific entities in BCP ALL – near-

haploidy, low hypodiploidy, high hyperdiploidy, near-triploidy, and near-tetraploidy – are, in 

all practice, not seen in T-cell ALL, with the exception of rare cases of tetraploid T-ALL 

(Paulsson and Johansson, 2009; Lemež et al., 2010). 

 

Number and Types of Chromosomal Abnormalities 

T-ALL is only rarely karyotypically complex; in fact, approximately 50% of 

cytogenetically abnormal childhood T-ALL cases harbor only one chromosomal aberration; 

two, three, and four changes are found in ~25%, ~10%, and ~8% of cases, respectively (Fig. 

3B). Thus, prior to interphase FISH, SNP-A, and molecular genetic analyses revealing several 

additional rearrangements and mutations in T-ALL, there was little evidence for a multistep 

oncogenic process underlying T-ALL, something that is now widely accepted (Zhang et al., 

2012). Structural chromosome changes are much more common than trisomies/monosomies: 

65% of cases carry only structural abnormalities, 25% both structural and numerical changes, 

and 10% only gains/losses. This holds true also for T-ALL with single chromosomal changes, 

90% of which are structural and 10% numerical (Mitelman et al., 2016).  

Thus, in conclusion, T-ALL is typically karyotypically characterized by the presence of 

only one or a few structural chromosome changes. 

 

Frequent Chromosome Abnormalities and Their Molecular Genetic Correlates 

A database search of all published, cytogenetically abnormal pediatric T-ALL cases 

(Mitelman et al., 2016) reveals that the most common aberrations are translocations or 

inversions involving the TCR loci (~30% of aberrant cases), deletions of 6q (~20%), loss of 
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9p material through deletions or unbalanced translocations (~15%), and trisomy 8, deletions 

of 11q, and loss of 12p (5-10%), frequencies on a par with those in larger population-based 

series of childhood T-ALL (Heerema et al., 1998; Schneider et al., 2000; Karrman et al., 

2009a). In cases with single changes, the proportion of TCR translocations/inversions remains 

approximately 30%, whereas the frequencies of 6q and 9p deletions (10%) and +8 and loss of 

11q and 12p (<5%) decrease. Thus, based on cytogenetic data alone, TCR translocations are 

primary abnormalities whereas the unbalanced changes are secondary, in line with neoplasia-

associated chromosome aberrations in general (Johansson et al., 1996). 

There is ample evidence that the functionally important outcome of the 9p deletions in 

T-ALL is loss of CDKN2A, encoding the cell cycle regulator cyclin-dependent kinase 

inhibitor 2A (Kawamata et al., 2008; Mullighan et al., 2008; Yu et al., 2011; Karrman et al., 

2015). As to the genes targeted by del(6q), it is surprising and frustrating that they remain, 

like the Scarlet Pimpernel, elusive – not least considering that a relatively high frequency of 

6q deletions was identified in T-ALL already in the late 1970s (Mitelman et al., 2016). 

However, the minimally deleted region has been delineated to 6q15-16, in which three genes 

that code for the caspase 8 associated protein 2 (CASP8AP2), the EPH tyrosine kinase 

receptor A7 (EPHA7), and the glutamate receptor, ionotropic, kainate 2 (GRIK2) have been 

suggested as candidate tumor suppressors (Sinclair et al., 2004; Remke et al., 2009; López-

Nieva et al., 2012). Little is also known about the molecular genetic consequences of the 11q 

deletions, although loss of the ATM gene has been proposed as one likely target (Krieger et 

al., 2010). As regards trisomy 8 and loss of 12p, their functional outcome remains unresolved. 

In fact, these common, cytogenetically unbalanced changes may not be “reducible” to one or 

a few genes gained or lost. Larger gene dosage effects are perhaps more likely but 

unfortunately less amenable for analysis. 
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TCR Translocations and Inversions 

In the beginning of the 1980s, it was shown that some avian leucosis viruses could 

induce tumors in chicken by integrating close to, and thus deregulating, “cellular oncogenes”; 

this became known as “oncogenesis by promoter insertion” (Hayward et al., 1981). It was 

subsequently hypothesized that also human neoplasms could result from genetic 

transpositions, such as translocations, leading to aberrant expression of genes located at the 

chromosome breakpoints (Klein, 1981). Evidence in support of this soon emerged from 

studies of Burkitt lymphoma revealing that the MYC gene at 8q24.21 was deregulated as a 

consequence of being illegitimately recombined with the IGH, IGK, and IGL loci at 14q32.33, 

2p11.2, and 22q11.22, respectively (Leder et al., 1983). A few years later, aberrant expression 

of oncogenes due to illegitimate rearrangements with the TCR genes was also identified in T-

ALL (Erikson et al., 1986). 

Translocations and inversions involving the TCR genes are now recognized as the 

oncogenic hallmark of T-ALL; they are present in close to 30% of all cases as ascertained by 

FISH and PCR analyses, with almost 50% going undetected by chromosome banding analysis 

(Le Noir et al., 2012). The TCR loci most often illegitimately recombined with target genes 

are TRD and TRB, i.e., translocations and inversions involving 14q11 and 7q34, respectively. 

In contrast, TRA is seldom involved and aberrations affecting TRG are very rare (Cauwelier et 

al., 2006; Le Noir et al., 2012; Sugimoto et al., 2014).  

By characterizing TCR rearrangements several partner genes have been identified and 

proved to be important for T-ALL oncogenesis (Erikson et al., 1986; Ellisen et al., 1991; 

Fitzgerald et al., 1991), as further discussed below. The formation of TCR aberrations are 

facilitated by the somatic TCR recombination process that is active in all developing 

thymocytes (Fig. 2) and dependent on the induction of multiple double strand breaks (DSBs) 

by the recombination-activating RAG proteins. If there are foreign DSBs, occasionally also 
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recombinase-mediated (Le Noir et al., 2012), present in the vicinity during this process, the 

repair system may misalign the strands, resulting in illegitimate recombinations. 

 

Pathogenetic Outcome 

Most illegitimate TCR recombinations generated probably do not afford any advantages 

to the cell and are hence not selected for – thus, they will go undetected. If, on the other hand, 

DSBs occur close to a gene with transforming enhancing capability, it may be placed under 

the control of TCR enhancers or promoters, resulting in its overexpression and conferring a 

selective advantage to the cell (Graux et al., 2006). However, not all TCR translocations exert 

their influence in this way. For example, Dik et al. (2007) showed that removal of a negative 

regulatory element from the LMO2 locus is the main mechanism underlying the activation of 

this gene by the t(11;14)(p13;q11). Furthermore, TCR translocations may actually, albeit 

rarely, instead lead to silencing of a gene, as shown for BCL11B and LEF1; these two genes 

are otherwise relatively often targeted by deletions or inactivating mutations in T-ALL 

(Gutierrez et al., 2010b, 2011; Le Noir et al., 2012; Ehrlich et al., 2014). 

Approximately 30 genes are now known to recombine illegitimately with TCR loci in T-

ALL (Table 3). The gene categories mainly targeted are class II basic helix-loop-helix 

(bHLH) and homeobox transcription factor genes and LIM-domain-only (LMO) genes that 

modulate transcriptional complexes by protein-protein interactions. More rarely, other types 

of gene are implicated, such as those coding for cyclins, kinases, and receptors. Thus, the 

functional outcome of most TCR translocations is deregulated transcription with ensuing 

aberrant gene expression. Indeed, cases with certain TCR partner genes, such as HOXA, 

LMO1/2, TAL1, TLX1, and TLX3, represent T-ALL subgroups that are characterized by 

distinct gene expression patterns (Ferrando et al., 2002; Van Vlierberghe et al., 2008b,c). 
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It should be emphasized that some of the genes targeted may be deregulated by 

mechanisms other than TCR rearrangements, for example TAL1 by interstitial 1p33 deletions, 

insertions, disruption of looping chromosomal structures, and long-range chromatin 

interactions (Janssen et al., 1993; Mansour et al., 2014; Patel et al., 2014; Navarro et al., 2015; 

Hnisz et al., 2016), LMO2 by 11p12-13 deletions (Van Vlierberghe et al., 2006), TLX3 by a 

translocation to BCL11B (MacLeod et al., 2003), MYB by gene duplication (Clappier et al., 

2007), HOXA by the fusion proteins KMT2A-MLLT1, PICALM-MLLT10, and SET-

NUP214 (Soulier et al., 2005; Van Vlierberghe et al., 2008c), MYC by non-TCR 

rearrangements and focal duplications of the NOTCH1-driven MYC enhancer (Herranz et al., 

2014; La Starza et al., 2014), and NOTCH1 by activating mutations (Weng et al., 2004). Thus, 

a rare TCR partner may well play a greater role in T-ALL development than surmised based 

on the incidence of the translocation alone. 

 

Fusion Genes 

More than 75 fusion genes generated through various types of abnormality, mainly 

translocations but also deletions, insertions, and episome formation, have so far been reported 

in T-ALL (Table 4). Half of these encode factors involved in transcriptional regulation, thus 

recapitulating the “altered gene expression” theme of TCR translocations and inversions. A 

smaller fraction (14/76; 18%) codes for tyrosine kinases, several of which are candidates for 

targeted therapy. 

Some of the fusion genes, for example those involving ABL1, ETV6, and KMT2A, were 

identified through molecular genetic characterization of cytogenetically detectable 

chromosomes changes or abnormalities identified by FISH screening for rearrangements of 

these genes. In the last few years, however, NGS analyses have revealed a plethora of novel 

fusion genes. In fact, half of the fusion genes listed in Table 4 were detected by whole-
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genome and transcriptome sequencing. Many of these fusions are out-of-frame, resulting in 

loss of function (Zhang et al., 2012; Atak et al., 2013). Furthermore, they often co-occur in 

individual cases. For example, there was an average of 5.5 fusion events per patient sample in 

the study by Atak et al. (2013). Considering that all NGS-identified fusions have, as of yet, 

only been reported in single cases, their pathogenetic and clinical impact remains to be 

elucidated. It will be an arduous, almost Herculean, task to characterize functionally all new 

gene fusions discovered by NGS; some of them may well turn out to be innocent bystanders 

or, rather, passengers. In fact, this may be the case for the vast majority of tumor-associated 

fusion genes identified by NGS to date (Mertens et al., 2015). 

 

Submicroscopic Copy Number Alterations and Uniparental Isodisomies 

In the “old days”, cytogenetically cryptic genomic imbalances in T-ALL were mainly 

identified by targeted interphase FISH analyses focusing on only a few loci/genes, such as 

9p21/CDKN2A and 1p33/STIL-TAL1. Thus, our knowledge about the pattern of copy number 

abnormalities (CNAs) in T-ALL was not only limited but also heavily biased. However, this 

all changed with the advent of SNP-A (Mullighan et al., 2007), which enabled genome-wide 

detection of CNAs as well as of uniparental isodisomies (UPIDs).  

SNP-A analyses of larger T-ALL series have revealed that 30-40% harbor segmental 

UPIDs (sUPIDs) and that most carry CNAs, with a mean of 3-7 CNAs per case (Mullighan et 

al., 2007, 2008; Yu et al., 2011; La Starza et al., 2013; Karrman et al., 2015). In contrast, 

chromothripsis, i.e., tens to hundreds of clustered CNAs that oscillate between two copy 

number states and that most likely occur during a single cellular catastrophe (Stephens et al., 

2011; Cai et al., 2014), seems to be quite rare in T-ALL, with the possible exception of ETP 

ALL (Zhang et al., 2012; Karrman et al., 2015). 
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Deletions 

The vast majority (>75%) of CNAs in T-ALL are deletions, many of which possibly 

RAG-mediated (Raschke et al., 2005; Mendes et al., 2014), that typically target tumor 

suppressor genes, most frequently (>70% of cases) CDKN2A, with a concurrent CDKN2B 

deletion in a slightly lower frequency (Mullighan et al., 2008; Yu et al., 2011; Zhang et al., 

2012; Karrman et al., 2015). Other relatively common deletions involve the transcriptional 

repressor BCL11B (at 14q32.2), the transcription factor LEF1 (4q25), the tumor suppressors 

PTEN (10q23.31), and WT1 (11p13), the tyrosine phosphatase PTPN2 (18p11.21), and genes 

involved in epigenetic regulation, such as those coding for the histone modifiers EED 

(11q14.2), EZH2 (7q36.1), PHF6 (Xq26.2), and SUZ12 (17q11.2) (Balgobind et al., 2008; 

Gutierrez et al., 2009, 2010b, 2011; Tosello et al., 2009; Kleppe et al., 2010; Van Vlierberghe 

et al., 2010; Ntziachristos et al., 2012; Zhang et al., 2012). Many of these, with the notable 

exception of CDKN2A/B, are also relatively often inactivated through mutations, with or 

without coexisting deletions of the other allele, in T-ALL (Table 5). 

The pathogenetic impact of deletions is not always loss of gene function, however. 

Instead, they may actually lead to activation of target genes. A prime example of this is the 

interstitial 90 kb deletion in 1p33 that places TAL1 under the control of the promoter of the 

neighboring gene STIL, which is highly expressed in T-cells; this promoter swapping results 

in overexpression of TAL1 (Janssen et al., 1993; Ferrando et al., 2002; Yu et al., 2011). 

Furthermore, cryptic deletions of variable size in 11p12-13 have been shown to remove a 

negative regulatory element located 3 kb upstream of LMO2, leading to elevated expression 

of this gene (Van Vlierberghe et al., 2006, 2008a). Yet another outcome of a deletion in T-

ALL is a fusion of the two genes located in the breakpoints, as exemplified by the SET-

NUP214 chimera that is generated by an approximately 3 Mb deletion between 9q34.q11 

(where SET is located) and 9q34.q13 (NUP214) (Van Vlierberghe et al., 2008c). 
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Deletions involving the TCR loci, corresponding to monoclonal, legitimate TCR 

rearrangements, are, in our experience, found by SNP-A analyses in more than 90% of T-ALL 

cases. Although these deletions are not pathogenetically important, they may nevertheless 

provide important information in the sense that they are a valuable marker for the presence of 

leukemic cells in the investigated sample; this is useful in a diagnostic setting when SNP-A 

analysis is used to identify genomic imbalances in T-ALL. 

 

Gains 

Only a few recurrent submicroscopic chromosomal gains have been identified in T-

ALL. One example is the rearrangement between NUP214 and ABL1 at 9q34 that is amplified 

on episomes, or occasionally in homogeneously staining regions, in ~5% of T-ALL cases 

(Graux et al., 2009). The NUP214-ABL1 fusion codes for a constitutively active tyrosine 

kinase and although the clinical experience is limited some T-ALL patients with this chimeric 

gene have responded well to treatment with tyrosine kinase inhibitors (Quintás-Cardama et 

al., 2008; Clarke et al., 2011; Crombet et al., 2012). MYB (6q23.3) is gained in approximately 

10% of cases, in most instances as a focal tandem duplication involving only the MYB locus; 

this results in a strong and sustained expression of the gene (Clappier et al., 2007; Lahortiga et 

al., 2007). An alternative mechanism for deregulated MYB expression is the TRB translocation 

t(6;7)(q23;q34), seen in a small percentage of T-ALL cases (Table 3). 

 

Uniparental isodisomy 

Copy number neutral stretches of loss of heterozygosity can arise through different 

mechanisms: i) homozygosity by descent, ii) meiotic UPID, and iii) mitotic UPID. 

Constitutional homozygosity by descent is common in all populations and is increased in 

frequency and length when there is close kinship between the parents (Kirin et al., 2010). A 
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UPID, which may be either constitutional or acquired, is generated when both alleles are from 

the same parental origin and identical, hence giving rise to homozygosity (Engel, 1980). 

Meiotic missegregation (meiosis II error) can result in UPIDs associated with different 

syndromes, sometimes with an increased risk of cancer (Lapunzina and Monk, 2011). That 

somatically acquired mitotic UPIDs are involved in cancer development was first described in 

1983 when it was shown that sUPIDs of 13q could constitute the “second hit”, according to 

Knudson’s two-hit hypothesis, leading to homozygosity of the germline RB1 mutation in 

retinoblastoma (Cavenee et al., 1983). With the advent of the SNP-A technology, it became 

apparent that sUPIDs are present in a wide variety of neoplastic disorders and often associated 

with duplications of mutations or deletions of tumor-associated genes, rendering these 

changes homozygous (Makishima and Maciejewski, 2011). 

Whole chromosome UPIDs are very rare (<1%) in T-ALL (Kawamata et al., 2008; 

Karrman et al., 2015) in contrast to pediatric BCP ALL where such UPIDs are found in 5-

10% of cases (Kawamata et al., 2008; Lundin et al., 2016). One reason for this frequency 

discrepancy could be the fact that whole chromosome UPIDs are particularly common in 

aneuploid malignancies (Lundin et al., 2016) and that T-ALL cases only rarely are aneuploid 

(Fig. 3A). In contrast, sUPIDs are present in approximately one-third of cases (Kawamata et 

al., 2008; Karrman et al., 2015); the corresponding frequency in BCP ALL is 10-15% 

(Kawamata et al., 2008; Lundin et al., 2016). Most sUPIDs in T-ALL involve 9p and seem 

specifically to target CDKN2A. In fact, Karrman et al. (2015) reported that all sUPID9p in 

pediatric T-ALL were associated with homozygous CDKN2A deletions and that a 

heterozygous CDKN2A deletion had occurred prior to the sUPID formation in all instances. 

To date, only a few other recurrent sUPIDs, involving the chromosome segments 4q13.3qter, 

10q21.3qter, and 17q12qter, have been identified in T-ALL (Mullighan et al., 2007; 

Szczepański et al., 2011; La Starza et al., 2013; Karrman et al., 2015). The tumor suppressor 
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gene PTEN at 10q, encoding a phosphatase that is negatively controlled by NOTCH1 and that 

is often inactivated through deletions or mutations in T-ALL (Table 5) (Palomero et al., 

2007), was homozygously deleted in one case with sUPID10q (Mullighan et al., 2007) and 

could hence be a possible target of this abnormality. However, PTEN was neither deleted nor 

mutated in another T-ALL with sUPID10q (Karrman et al., 2015). The genes targeted by the 

sUPIDs of 4q and 17q also remain to be identified. NGS analyses of T-ALL cases with 

sUPIDs could of course resolve this issue. However, the functional outcome may instead be 

loss or gain of imprinted loci, as is the case in some constitutional disorders (Lapunzina and 

Monk, 2011). If so, one would expect that either the maternal or paternal allele will be 

retained in all cases with the same sUPID. This is easily analyzed if parental DNA is 

available, but methylation analyses of known imprinted loci located within the sUPIDs could 

also provide important information in this regard. However, and quite surprisingly, the 

possibility of imprinting effects of acquired UPIDs in leukemia has received little attention to 

date. 

 

Gene Mutations 

A large number of genes have been shown to be mutated in T-ALL, albeit at relatively 

low frequencies, equivalent to minor hills in the cancer genetic landscape (Vogelstein et al., 

2013). However, the mutation frequency of one gene would definitely represent a mountain 

(to keep the metaphor) namely NOTCH1. 

The first indication that NOTCH1 could be pathogenetically important in T-ALL came 

in the early 1990s when the t(7;9)(q34;q34) was cloned; this rare translocation and its variant 

t(9;14)(q34;q11) result in overexpression of a truncated, constitutively activated form of 

NOTCH1 (Ellisen et al., 1991; Suzuki et al., 2009). However, the pivotal role of this gene in 

T-ALL became apparent first when activating NOTCH1 mutations were found in more than 
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50% of cases (Weng et al., 2004) (Table 5). NOTCH1, which is crucial for T-cell fate and 

differentiation, is a transmembrane heterodimeric receptor composed of two subunits – one 

extracellular and one transmembrane/intracellular – that interact via the heterodimerization 

domain (HD) (Koch and Radtke, 2011). The binding of ligands, such as Delta-like 1, 3, and 4 

and Jagged 1 and 2, to the extracellular unit induces conformational changes that lead to 

cleavage of NOTCH1. This results in the release of the intracellular domain that then 

translocates into the nucleus where it associates with DNA-binding proteins and cofactors, 

constituting a complex that acts as a transcriptional activator. NOTCH1 regulates the 

expression of several genes, mainly those involved in proliferation, metabolism, and cell 

cycling, such as MYC, HES1 (affecting the PI3K-AKT-mTOR signaling pathway), and 

CCND3 (Paganin and Ferrando, 2011; Tosello and Ferrando, 2013). Phosphorylation of the 

PEST domain of NOTCH1 and recruitment of FBXW7, a ubiquitin protein ligase, induce 

NOTCH1 degradation. NOTCH1 mutations cluster in the HD, resulting in ligand-independent 

activation, and in the PEST domain, stabilizing NOTCH1 by impairing degradation by 

FBXW7. The latter effect can also be accomplished by inactivating FBXW7 mutations, found 

in ~15% of T-ALL (Table 5). Approximately 20% of cases harbor dual HD/PEST or 

HD/FBXW7 mutations; these co-existing mutations work in synergy, optimizing the 

NOTCH1 signaling (Paganin and Ferrando, 2011; Tosello and Ferrando, 2013). The frequent 

aberrant NOTCH1 signaling in T-ALL has obviously made this pathway an attractive target 

for therapy, although with limited success so far (Roti and Stegmaier, 2014). 

In recent years, the mutational landscape of T-ALL has been radically re-defined by the 

use of NGS. Although the emerging picture is still unclear, the genes implicated can 

nevertheless often be allocated to specific biological processes, such as signaling (DNM2, 

IL7R, JAK1, JAK3, NRAS, and PTEN), transcription (BCL11B, LEF1, and WT1), epigenetic 

modification (CREBBP, EED, EZH2, PHF6, and SUZ12), and hematopoiesis (ETV6, IKZF1, 
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and RUNX1) (Table 5) (Zhang et al., 2012; Atak et al., 2013; Karrman et al., 2015; Vicente et 

al., 2015). The mutational spectra differ to some extent among subclasses of T-ALL as 

defined by expression of certain transcription factor genes: activating mutations in IL7R, 

JAK1, and JAK3 are particularly common in HOXA- and TLX3-positive cases (Vicente et al., 

2015), inactivating mutations in PHF6 are associated with TLX1- and TLX3-positivity (Van 

Vlierberghe et al., 2010), and WT1 mutations are more frequent in cases expressing TLX1, 

TLX3, or HOXA (Tosello et al., 2009). The types of gene mutated in “conventional” T-ALL 

and in ETP ALL also differ somewhat, with those involved in hematopoiesis, cytokine or 

RAS signaling, and histone modification more often being targeted in ETP ALL, as 

mentioned to above (Zhang et al., 2012). 

 

EPIGENETICS OF T-ALL 

It has been known since the early 1980s that also epigenetic abnormalities contribute to 

tumorigenesis by perturbing gene expression, not associated with alterations of the DNA 

sequences coding for the deregulated genes in question (Feinberg and Tycko, 2004). There are 

several underlying mechanisms for switching genes on and off, including changes in DNA 

methylation, post-translational histone modifications, and altered expression patterns of non-

coding RNAs (Jiang et al., 2013). Although genetics and epigenetics reflect two distinct 

mechanisms, it should be emphasized that there is a complex interplay between epigenetic 

and genetic aberrations, where the former may well be caused by the latter. In fact, many of 

the genes deleted and/or mutated in T-ALL code for factors involved in epigenetic regulation 

(Table 5). Indeed, it has been reported that more than 50% of pediatric T-ALL cases harbor 

mutations in such regulators (Huether et al., 2014). Thus, T-ALL is very much an epigenetic 

disease. 
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DNA methylation of CpG islands, mediated by members of the DNA methyltransferase 

(DNMT) family, is strongly associated with gene silencing (Peirs et al., 2015). Hence, 

identification of hypermethylated promoters may indicate the presence of tumor suppressor 

genes. In T-ALL, suppressors thus identified include the ATP-binding cassette sub-family G 

member 2 (ABCG2 at 4q22.1), cyclin-dependent kinase inhibitor 1A (CDKN1A; 6p21.2), 

cyclin-dependent kinase inhibitor 2B (CDKN2B; 9p21.3), CCAAT/enhancer binding protein 

alpha (CEBPA; 19q13.11), paired box 5 (PAX5; 9p13.2), and spleen tyrosine kinase (SYK; 

9q22.2) (Van der Meulen et al., 2014).  

There are several types of post-translational histone modification – acetylation, 

methylation, phosphorylation, ubiquitination, sumoylation biotination, citrullination, poly-

ADP-ribosylation, and N-glycosylation (Wang et al., 2016). So far, most studies of T-ALL 

have focused on methylation and acetylation. The polycomb repressive complex 2 (PRC2), 

which consists of EZH2, EED, SUZ12, and RBBP4 and effectuates histone methylation and 

gene silencing, is targeted by loss-of-function mutations and deletions in a substantial 

proportion of T-ALL cases, in particular ETP ALL. Similarly, the PHF6 complex, associated 

with a closed chromatin configuration, is inactivated by PHF6 mutations/deletions in 

approximately 20% of T-ALL cases (Van Vlierberghe et al., 2010; Zhang et al., 2012) (Table 

5). Conversely, histone acetylation, which is linked to transcriptional active regions, is 

targeted by mutations in EP300 and CREBBP, coding for acetyltransferases (Zhang et al., 

2012; Vicente et al., 2015). Thus, several gene mutations/deletions in T-ALL result in 

deregulated gene expression by modifying histone methylation or acetylation. 

MicroRNAs are short single-stranded non-coding RNA molecules that interfere with 

mRNA, negatively affecting protein translation, and that can function as both tumor 

suppressors and oncogenes, depending on their target genes (Mets et al., 2014, 2015). For 

example, onco-miRNAs, such as miR19b, miR20a, miR26a, miR92, miR128-3p, and 
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miR223, suppress a network of tumor suppressor genes in T-ALL, including BIM, IKZF1, 

FBXW7, PHF6, and PTEN (Mavrakis et al., 2011; Mets et al., 2014). Thus, not only deletions, 

inactivating mutations, and DNA hypermethylation but also microRNAs target tumor 

suppressor genes in T-ALL. Conversely, some miRNAs, e.g., miR223, are regulated by T-

ALL oncogenes, such as NOTCH1 and TAL1 (Mansour et al., 2013; Kumar et al., 2014), and 

inactivation of tumor suppressor miRNAs, such as miR29, miR31, miR155, miR193-3p, and 

miR200, promotes leukemogenesis by activating the oncogenes HBPI, MCL1, and MYB 

(Sanghvi et al., 2014; Mets et al., 2015). Other types of non-coding RNA, such as long non-

coding RNAs (lncRNAs), have also been implicated in T-ALL (Wallaert et al., 2016). For 

example, the lncRNAs LUNAR1 and NALT, both of which regulated by NOTCH1, function as 

transcriptional regulators of IGF1R and NOTCH signaling, respectively (Durinck et al., 2014; 

Trimarchi et al., 2014; Wang et al., 2015). In conclusion, the epigenetic landscape of T-ALL 

is definitely intricate and compounded. 

 

TUMOR EVOLUTION 

Initiating Event and Cell of Origin 

An inherent problem in cancer research is the simple fact that we are not present to 

witness the birth of a tumor cell – or as stated by Theodor Boveri already in 1914: it is 

impossible to observe a neoplasm in statu nascendi (Boveri, 1914; Harris, 2008). Thus, any 

evidence for certain mutations being “initiating events” in T-ALL is circumstantial and 

definitely open to interpretation. This notwithstanding, it has been shown that certain genetic 

aberrations have the potential to give rise to pre-leukemic clones that have been ascribed 

several characteristics: 1) the ability to differentiate into several lineages, indicating a 

hematopoietic stem cell phenotype; 2) the capacity, after acquisition of additional mutations, 

to evolve into leukemia-initiating cells; 3) a propensity to survive chemotherapy, hence acting 
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as a potential reservoir for relapses; and 4) to remain at remission as well as to exist in 

samples from healthy individuals (Shlush et al., 2014). Of all the genetic aberrations in T-

ALL, which would fit this “job description”? Oncogenes deregulated by TCR translocations, 

such as TAL1, LMO1/2, TLX1/3, and HOXA, have been suggested to possess pre-leukemic 

potentials (Tremblay and Curtis, 2014) and, furthermore, mouse models have substantiated 

that LMO2 expression induces aberrant self-renewal in committed T-cells, hence generating a 

pre-leukemic clone (McCormack et al., 2010). NOTCH1 activation has also been implicated 

as a potential mechanism to generate a pre-leukemic or leukemia-initiating phenotype 

(Armstrong et al., 2009; Blackburn et al., 2012). However, there are several examples of T-

ALL cases harboring NOTCH1 mutations only in subclones and/or being positive for such 

mutations at diagnosis but negative at relapse; taken together, this shows that at least some 

NOTCH1 mutations are secondary events (Mansour et al., 2007; Clappier et al., 2011; 

Karrman et al., 2015). In conclusion, available evidence indicates that illegitimate TCR 

rearrangements are the main candidates for initiating events, while gene mutations and 

deletions are secondary and important for clonal evolution and overt leukemia. 

The cell of origin is also contentious. T-ALL-initiating cells, identified through serial 

mouse transplantation assays, could be tracked by analyzing the original clonal TCR 

rearrangement present in the initial diagnostic sample, indicating an origin in a committed T-

cell progenitor rather than in the hematopoietic stem cell compartment (Armstrong et al., 

2009). In addition, it has been shown that the majority of TCR translocations arise in 

thymocytes negative for CD1a, CD4, and CD8. However, many T-ALL cases display 

immunophenotypic features corresponding to a later differentiation arrest, at the cortical 

CD1a-positive stage. Hence, the oncogene activation and the differentiation block seem to be 

uncoupled, which perhaps is not surprising considering that additional aberrations are needed 

for leukemic transformation (Le Noir et al., 2012). It should also be emphasized that different 
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subtypes of T-ALL may well arise in distinct progenitor cells. Indeed, it has been shown that 

the cell of origin influences which genetic events that may drive transformation (Berquam-

Vrieze et al., 2011). 

 

The Road to Relapse 

Four different types of relapse have been identified by analyses of paired 

diagnostic/relapse T-ALL samples, based on genetic relationships with the major clone at 

diagnosis: 1) identical clones; 2) clonal evolution; 3) evolution from an ancestral clone; and 4) 

genetically “distinct” leukemias (Mullighan et al., 2008; Clappier et al., 2011; Szczepański et 

al., 2011; Tzoneva et al., 2013; Karrman et al., 2015). The most common road to relapse 

appears to be evolution from a preleukemic clone that often is present as a minor cell 

population at diagnosis and that is resistant to the therapy given. Hence, most relapse clones 

are characterized by loss of some abnormalities found at diagnosis and gain of a few 

additional aberrations; for example, NT5C2, SMARCA4, SUZ12, and WHSC1 mutations are 

enriched at relapse (Tzoneva et al., 2013; Kunz et al., 2015). Relapses are nevertheless 

remarkably genomically stable, something that strongly argues against chromosomal 

instability playing a major role during disease progression (Tosello et al., 2009). 

 

CLINICAL, GENETIC, AND EPIGENETIC FEATURES AND PROGNOSIS 

Considering that the outcome of T-ALL is quite dismal, at least compared with BCP 

ALL, and that patients who relapse respond poorly to reinduction therapy, several studies 

have tried to identify prognostically important factors – clinical, genetic as well as epigenetic 

– that could be used for risk stratification at the time of diagnosis or early on during treatment. 

However, many such factors “are called, but few are chosen” (Table 6). 
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Clinical Features 

Age, gender, and WBC count at diagnosis have not been clearly, or repeatedly, shown 

to influence the outcome (Table 6). As regards maturational stages, such as T-I and T-II 

versus T-III and T-IV, ETP ALL, and absence of biallelic TRG rearrangements, the more 

immature subtypes tend to be associated with an inferior prognosis; however, the data are 

limited and also somewhat conflicting. Thus, in all practice, clinical and immunophenotypic 

features at the time of diagnosis are not used for treatment decisions. In contrast, treatment 

response, as measured by MRD analyses at different time points, is definitely a strong 

prognostic indicator (Table 6) and is hence used in current treatment protocols to modify 

subsequent therapy. 

 

Genetic Features 

As seen in Table 6, cytogenetic features do not play a prognostic role in T-ALL, nor do 

types of TCR translocation/inversion. Furthermore, data on fusion genes are either 

contradictory or based on very few analyzed cases; thus, the presence of certain fusion genes 

should not, as of yet, influence clinical decision making, at least not as a single marker for 

prognostication.  

The clinical implications of the majority of deletions and mutations are also unknown. 

This is most probably because most are quite infrequent and that hence large patient cohorts 

are required to ascertain their effect on outcome, in particular as independent risk factors. As 

for the genes deleted and/or mutated that have been analyzed from a prognostic perspective, 

most have been reported not to confer any significant impact, i.e., deletions of CDKN2A, 

deletions/inactivating mutations of BCL11B, LEF1, PHF6, PTEN, and WT1, and activating 

mutations of NRAS (Table 6). The mutations that have been most extensively investigated in 

T-ALL are undoubtedly those affecting the NOTCH1 gene. Several studies have identified a 
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favorable early therapy response in cases with NOTCH1 mutations (Table 6), something that, 

however, only could be translated into improved outcome in a few studies (Kox et al., 2010; 

Zuurbier et al., 2010). This could of course reflect differences in therapy among treatment 

protocols. Jenkinson et al. (2013) reported a significantly improved overall survival of 

pediatric T-ALL cases with coexisting FBXW7 and NOTCH1 mutations, but that could not be 

confirmed in a Swedish T-ALL cohort (Fogelstrand et al., 2014). Finally, a meta-analysis of 

711 pediatric T-ALL patients did not find any correlation between the presence of NOTCH1 

mutations and event-free survival (Ma and Wu, 2012). 

 

Epigenetic Features 

Only a few studies have focused on the prognostic impact of epigenetic changes in 

pediatric T-ALL, reporting, for example, that high levels of miR-16 and miR-221 are 

associated with shorter survival. This has, however, not been seen in all studies and, 

furthermore, these studies were based on quite a low number of patients, which often included 

both pediatric and adult patients, precluding any firm conclusions as to the prognostic role of 

miRs in childhood T-ALL (Kaddar et al., 2009; Gimenes-Teixeira et al., 2013; Xi et al., 

2013). Data on promoters that are differentially methylated in T-ALL have been applied to 

define CpG island methylator phenotypes, delineating cases as either hypermethylated or 

hypomethylated (Borssén et al., 2013, 2016), with hypomethylated cases having a 

significantly worse event-free and overall survival in one of the studies (Borssén et al., 2013). 

Obviously, this needs to be addressed in larger, prospective cohorts.  

 

CONCLUSION 

During the last decade, a vast amount of data has been forthcoming as regards the 

genetic and epigenetic genetic blueprint of T-ALL. The tasks now are to integrate these 
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genetic and epigenetic data into an all-encompassing (and preferably) testable theory on the 

pathogenesis of T-ALL and to translate them into clinical use for better risk stratification and 

improved outcome. 
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Figure legends 

Figure 1. (A) The normal T-cell differentiation process. Early thymic progenitors enter the 

thymus through vessels in the corticomedullary junction. During their thymic circuit, they 

undergo distinct developmental stages, characterized by somatic rearrangemants of the T-cell 

receptor (TCR) genes, resulting in surface expression of TCR molecules, most commonly 

TCRαβ. As the maturing T-cells move towards the cortex, TRB rearrangements are initiated. 

Expression of pre-TCR takes place in the outmost periphery of the cortex. T-cells that pass 

the so called β selection will subsequently express the final TCRαβ at the cell surface. 

Cortical thymic epithelial cells express the individual’s unique antigen-presenting proteins 

together with peptides. Only T-cells with TCRs that bind to a presented peptide with an 

appropriate affinity will survive, a process called positive selection. Surviving T-cells then 

migrate towards the central medulla where they are exposed to epithelial cells expressing self-

antigen complexes. At this stage, negative selection leads to destruction of cells that bind with 

high affinity to self-antigens; this process reduces autoreactivity. Hence, stringent criteria are 

applied to ensure sensitivity and specificity of the newly assembled TCRs, effectuated by both 

positive and negative selection. Only some 5% of the thymocytes generated in the thymus 

leave as mature T-cells. (B) The malignant intrathymic process. Stepwise accumulation of 

genetic alterations in early T-cells results in self-renewal capacity, differentiation block, and 

enhanced proliferation. Some of the more common T-ALL-associated genetic aberrations that 

contribute to the development of a malignant clone are listed to the left (CNA, copy number 

abnormality; sUPID, segmental uniparental isodisomy). The malignant T-lymphoblasts 

expand in the thymus and spill over into the peripheral circulation and invade other lymphatic 

and non-lympathic organs. (C) Normal T-cell circulation. Hematopoietic stem cells residing 

in the bone marrow give rise to thymus-seeding progenitor cells that migrate to the thymus, 

thereby sustaining thymopoiesis. The most immature cells entering the thymus are called 

early thymic progenitors (see A). The mature T-cells exit from the thymus and circulate in the 
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blood as well as through different lymphatic and non-lymphatic organs, some of which are 

shown here. (D) Circulation of malignant T-lymphoblasts. If genetic aberrations accumulate 

in an early T-cell (see B), the maturation process is disrupted, with ensuing proliferation of 

the malignant clone. The malignant T-lymphoblasts exit the thymus, overflow the peripheral 

circulation, and invade lymphoid and non-lymphoid organs such as the spleen, lymph nodes, 

bone marrow, and central nervous system. The crowding of malignant cells in these sites 

results in various T-ALL-associated symptoms and signs, such as suppressed bone marrow 

function, leukocytosis, neurological abnormalities, and respiratory distress. 

 

Figure 2. T-cell receptor (TCR) structures are assembled from multiple separate gene 

segments. The TCR genes TRB, TRA, and TRD (located within the TRA locus) consist of 

several different segments, denoted variable (V), diversity (D), joining (J), and constant (C); 

the numbers of the different segments were ascertained from Atlas of Genetics and 

Cytogenetics in Oncology and Haematology (http://atlasgeneticsoncology.org/). TRG is not 

graphically depicted but is organized as the other TCR genes. In the process of TRA 

recombination, TRD will be excised due to its intragenic position. The combinatorial 

possibilities created by V(D)J recombination are astonishing and are a cornerstone in our 

immune defense. If a DNA double strand break is introduced during TCR recombination and 

misaligned to a double strand break in the vicinity of a proto-oncogene, the resulting TCR 

translocation may have an oncogenic potential. 

 

Figure 3. (A) Distribution of modal chromosome numbers in karyotypically abnormal 

pediatric T-ALL (http://cgap.nci.nih.gov/Chromosomes/Mitelman). The vast majority (~70%) 

of cases displays a pseudodiploid karyotype, i.e., 46 chromosomes, with most remaining cases 

having modal chromosome numbers of 45 or 47-49. (B) Distribution of number of 
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abnormalities in pediatric T-ALL (http://cgap.nci.nih.gov/Chromosomes/Mitelman). 

Approximately half of all chromosomally abnormal cases display only one aberration, 

whereas two, three, and four changes are found in ~25%, ~10%, and ~8%, respectively. 
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TABLE 1. Outcome for Children, Adolescents, and Younger Adults with T-ALL 

 No. of Age group Inclusion 5-year pEFS 5-year pOS  

Treatment protocol patients (years) period (SE) (SE) Study 

AIEOP-BFM ALL 2000 

and AIEOP ALL R2006 

359 1-17 2000-2009 0.70 (0.02) 0.77 (0.02) D'Angiò et al. 2015 

CCG-1900 522 <21 1996-2002 0.73 (0.02) 0.80 (0.02) Gaynon et al. 2010 

COG ALL clinical trials 459 0-22 2000-2005  0.82 (0.02) Hunger et al. 2012 

DCOG ALL-9 90 1-18 1997-2004 0.72 (0.05)  Veerman et al. 2009 

NOPHO ALL-2000 115 1.0-<15 2002-2007 0.64 (0.05) 0.72 (0.0) Schmiegelow et al. 2010 

Total XV Study 76 1-18 2000-2007 0.78 (0.08) 0.88 (0.06) Pui et al. 2009 

UKALL 2003 187a 1-24 2003-2011 0.85 (0.05) 0.91 (0.04) Patrick et al. 2014 

pEFS, probability of event-free survival; pOS, probability of overall survival, SE, standard error. 

aDoes not include probable/definite early T-cell precursor ALL cases. 



TABLE 2. Frequencies of Karyotypically Abnormal T-ALL Cases 

Frequency Age group (years) No. of patients Study 

48% <18 249 Karrman et al. 2009a 

52% 14-52 60 Vitale et al. 2006 

57% 1-<22 143 Bash et al. 1993 

57% 1-<21 354 Schneider et al. 2000 

57% 0-17 111 Cavé et al. 2004 

61% <21 169 Heerema et al. 1998 

62% 1-<18 69 van Grotel et al. 2006 

72% 2-<18 57 Raimondi et al. 1988 

72% 15-59 204 Marks et al. 2009 

77% 4-78 65 Park et al. 2014 
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TABLE 3. Gene Partners in TCR Rearrangements in T-ALL 

Genea (location) Function of the target proteina Frequency (%)b Study 

Recurrently involved    

CCND2 (12p13) Cyclin family <1 Clappier et al. 2006 

HOXA9/10/11 (7p15) Homeobox transcription factor 5 Speleman et al. 2005 

IRS4 (Xq22) Cytoplasmic protein <1 Karrman et al. 2009b 

LCK (1p35) Protein tyrosine kinase <1 Tycko et al. 1991 

LMO1 (11p15) Transcriptional regulator 1-2 McGuire et al. 1989 

LMO2 (11p13) Transcriptional regulator 3-12 Royer-Pokora et al. 1991 

LYL1 (19p13) Basic helix-loop-helix transcription factor <1 Mellentin et al. 1989 

MYB (6q23) Transcription factor 3 Clappier et al. 2007 

MYC (8q24) Transcription factor 1-3 Hayashi et al. 1986 

NOTCH1 (9q34) Transcriptional regulator <1 Ellisen et al. 1991 

RIC3 (11p15) Chaperone protein <1 Atak et al. 2013 

TAL1 (1p33) Basic helix-loop-helix transcription factor 3-6 Finger et al. 1989 

TAL2 (9q31) Basic helix-loop-helix transcription factor <1 Xia et al. 1991 

TCL1A (14q32) Coactivator of the cell survival kinase AKT <1 Sugimoto et al. 2014 

TLX1 (10q24) Homeobox-containing transcription factor 5-10 Kagan et al. 1989 

TLX3 (5q35) Homeobox-containing transcription factor <1 Hansen-Hagge et al. 2002 

    

Single cases only 



BCL11B (14q32), GNAQ (9q21), IL2RB (22q12), IL7R (5p13), LEF1 (4q25), NKX2-4 (20p11), NKX2-5 (5q35), OLIG2 

(21q22), PLAG1 (8q12), PVT1 (8q24), SFTA3 (14q13), and TLX1NB (10q24) (Kasai et al., 1992; Wang et al., 2000; 

Przybylski et al., 2005, 2006; Le Noir et al., 2012; Atak et al., 2013) 

aBased on RefSeq summary (http://www.ncbi.nlm.nih.gov/refseq/) and UniProt (http://www.uniprot.org/uniprot/). 

bBased on Graux et al. (2006), Van Vlierberghe et al. (2008b), Van Vlierberghe and Ferrando (2012), La Starza et al. (2014), and  

Mitelman et al. (2016). 

 



TABLE 4. Fusion Genes in T-ALL 

Fusion gene Rearrangementa Molecular functions of the proteins involvedb Frequency (%)c Study 

Recurrent     

BCL11B-NKX2-5 t(5;14)(q35;q32) Transcriptional repressor/transcription factor <1 Nagel et al. 2003 

BCL11B-TLX3 t(5;14)(q35;q32) Transcriptional repressor/transcription factor 20 Bernard et al. 2001 

BCR-ABL1 t(9;22)(q34;q11) Serine threonine kinase/tyrosine kinase <1 Fizzotti et al. 1994 

DDX3X-MLLT10 t(X;10)(p11;p12) RNA helicase/transcription factor <1 Brandimarte et al. 2013 

ETV6-ABL1 t(9;12)(q34;p13) Transcription factor/tyrosine kinase <1 Zaliova et al. 2016 

ETV6-JAK2 t(9;12)(p24;p13) Transcription factor/tyrosine kinase <1 Lacronique et al. 1997 

ETV6-NCOA2 t(8;12)(q13;p13) Transcription factor/transcriptional coactivator <1 Zhou et al. 2012 

KMT2A-FOXO4 t(X;11)(q13;q23) Transcriptional coactivator/transcription factor <1 Borkhardt et al. 1997 

KMT2A-MLLT1 t(11;19)(q23;p13) Transcriptional coactivator/transcription regulation <1 Corral et al. 1993 

KMT2A-MLLT4 t(6;11)(q27;q23) Transcriptional coactivator/signaling transduction <1 Tanabe et al. 1996 

NUP98-RAP1GDS1 t(4;11)(q23;p15) Nuclear pore complex/GTPase activator activity <1 Hussey et al. 1999 

NUP214-ABL1 r(9)(q34q34) Nuclear pore complex/tyrosine kinase 5 Graux et al. 2004 

PICALM-MLLT10 t(10;11)(p12;q14) Assembly protein/transcription factor 5 Dreyling et al. 1998 

SET-NUP214 del(9)(q34q34) Histone binding/nuclear pore complex 3 Van Vlierberghe et al. 2008c 

STIL-TAL1 del(1)(p33p33) Cytoplasmic protein/developmental protein 12 Bernard et al. 1991 

SQSTM1-NUP214 t(5;9)(q35;q34) Scaffold protein/nuclear pore complex <1 Zhang et al. 2012 

     

Single cases only     

ASCC1-MAFG, B4GALT3-TPM3, BCR-FGFR1, BCR-PDGFRA, CEP85L-PDGFRB, CDK6-RPL35P4, CDK6-TLX3, CDKN2A-IFNWP19, CLINT1-MEF2C, 

CTNNA3-ARHGAP21, CUX1-FGFR1, DPY19L1-HOXA11, EEF1G-OOEP, EML1-ABL1, ETV6-ABL2, ETV6-ARNT, ETV6-INO80D, FAM133B-CDK6, FIP1L1-



PDGFRA, FUS-SET, GREB1-E2F6, GUK1-ARF1, HNRNPH1-MLLT10, HOXA11-AS/CDK6, IKZF1-ABCA13, KANSL1-ARL17A, KCNK17-KIF6, KMT2A-

CASC5, KMT2A-CREBBP, KMT2A-TET1, L3MBTL3-PTPRK, MBNL1-LMO2, MGAT4A-CXCR4, MGAT5-GPR39, MIR550A1-ZNRF2, MYB-AHI1, NAP1L1-

MLLT10, NDST2-RUNX1, NUP98-ADD3, NUP98-CCDC28A, NUP98-PSIP1, NUP98-SETBP1, OAZ1-RNF126, PAGE2B-ALAS2, PCMTD1-PRKAR1B, 

RUNX1-AFF3, RUNX1-EVX1, RUNX1-FGA7, SENP6-NKAIN2, SGCA-PPP1R9B, SSBP2-FER, STAG2-LMO2, STAT5B-STAT3, TCTA-TAL1, TPM3-JAK2, 

UGCG-PVT1, XPO1-MLLT10, ZEB1-BMI1, ZMYM2-FGFR1, and ZNF219-HNRNPC (Aplan et al., 1995; Rowley et al., 1997; Griesinger et al., 2002; Tagawa et 

al., 2002; Kuefer et al., 2003; Lahortiga et al., 2003; Mikhail et al., 2004; Su et al., 2004; De Keersmaecker et al., 2005; Romana et al., 2006; Etienne et al., 2007; 

Panagopoulos et al., 2007; Chinen et al., 2008; Otsubo et al., 2010; Chen et al., 2011; Kim et al., 2011; Wasag et al., 2011; Chmielecki et al., 2012; Zhang et al., 

2012; Atak et al., 2013; Brandimarte et al., 2013; Giacomini et al., 2013; Ittel et al., 2013; Bond et al., 2014; Yigit et al., 2015). 

aMany of the rearrangements are based on the chromosomal locations of the genes involved and have not been observed cytogenetically; instead they are 

inferred from molecular genetic analyses, such as next generation sequencing. Thus, some of the “translocations” may well be other types of abnormality, such 

as inversions, deletions, and insertions. 

bBased on RefSeq summary (http://www.ncbi.nlm.nih.gov/refseq/) and UniProt (http://www.uniprot.org/uniprot/).  

cBased on Graux et al. (2006), Van Vlierberghe et al. (2008b), Van Vlierberghe and Ferrando (2012), and Mitelman et al. (2016). 

 



TABLE 5. Genes Frequently Deleted and/or Mutated in T-ALL 

Gene (location) Frequency (%) Deletions/mutations Functiona Study 

CDKN2A (9p21.3) 70 Deletion Cell cycle regulation Yu et al. 2011; Karrman et al. 2015 

CDKN2B (9p21.3) 60 Deletion Cell cycle regulation Karrman et al. 2015; Vicente et al. 2015 

NOTCH1 (9q34.3) 60 Activating mutation Transcriptional regulator Weng et al. 2004; Zuurbier et al. 2010 

PHF6 (Xq26.2) 20 Deletion/inactivating mutation Chromatin remodelling Van Vlierberghe et al. 2010; Vicente et al. 2015 

PTEN (10q23.31) 20 Deletion/inactivating mutation Tumor supressor Gutierrez et al. 2009; Jenkinson et al. 2016 

FBXW7 (4q31.3) 15 Inactivating mutation Protein degradation Kox et al. 2010; Zuurbier et al. 2010 

WT1 (11p13) 15 Deletion/innactivating mutation Transcription factor Tosello et al. 2009; Vicente et al. 2015 

LEF1 (4q25) 10-15 Deletion/innactivating mutation Transcription factor Gutierrez et al. 2010b; Vicente et al. 2015 

BCL11B (14q32.2) 10 Deletion/innactivating mutation Transcriptional repressor Gutierrez et al. 2011; Vicente et al. 2015 

DNM2 (19p13.2) 10 Inactivating mutation Signaling transduction Zhang et al. 2012; Vicente et al. 2015 

EZH2 (7q36.1) 10 Deletion/innactivating mutation Chromatin remodelling Zhang et al. 2012; Vicente et al. 2015 

IL7R (5p13.2) 10 Activating mutation Receptor Zenatti et al. 2011; Vicente et al. 2015 

ETV6 (12p13.2) 5-15 Deletion/innactivating mutation Transcription factor Zhang et al. 2012; Vicente et al. 2015 

EED (11q14.2) 5-10 Deletion/innactivating mutation Chromatin remodelling Zhang et al. 2012; Vicente et al. 2015 

NRAS (1p13.2) 5-10 Activating mutation Signaling transduction Van Vlierberghe et al. 2011; Zhang et al. 2012 

RUNX1 (21q22.12) 5-10 Inactivating mutation Transcription factor Zhang et al. 2012; Vicente et al. 2015 

SUZ12 (17q11.2) 5-10 Deletion/innactivating mutation Chromatin remodelling Zhang et al. 2012; Vicente et al. 2015 

CREBBP (16p13.3) 5 Deletion/innactivating mutation Chromatin remodelling Karrman et al. 2015; Vicente et al. 2015 

ECT2L (6q24.1) 5 Inactivating mutation Unknown Zhang et al. 2012; Vicente et al. 2015 

JAK1 (1p31.3) 5 Activating mutation Signaling transduction Karrman et al. 2015; Vicente et al. 2015 

JAK3 (19p13.11) 5 Activating mutation Signaling transduction Zhang et al. 2012; Karrman et al. 2015 



PTPN2 (18p11.21) 

RB1 (13q14.2) 

5 

5 

Deletion 

Deletion 

Tumor supressor 

Tumor supressor 

Kleppe et al. 2010; Vicente et al. 2015 

Zhang et al. 2012; Karrman et al. 2015 

RELN (7q22.1) 5 Inactivating mutation Cell-cell interactions Zhang et al. 2012; Vicente et al. 2015 

aBased on RefSeq summary (http://www.ncbi.nlm.nih.gov/refseq/) and UniProt (http://www.uniprot.org/uniprot/). 

 

 



TABLE 6. Clinical, Genetic, and Epigenetic Features and Prognosis of Pediatric T-ALL 

 Prognostic  

Features impacta Study 

Clinical features   

Age (<10 vs ≥10 years) None van Grotel et al. 2008; Karrman et al. 2009a; Schrappe et al. 2011 

Gender None van Grotel et al. 2008; Karrman et al. 2009a 

WBC count    

<50 vs ≥50 x 109/l None van Grotel et al. 2008; Mansur et al. 2012 

<149.5 vs ≥149.5 x 109/l None Ballerini et al. 2008 

≥200 x 109/l Poor/none Karrman et al. 2009a; Hastings et al. 2015 

<10 vs 10-49 vs 50-99 vs >100 x 109/l None Vaitkevičienė et al. 2011 

Maturational stage   

Lack of biallelic TRG rearrangements Poor/none Gutierrez et al. 2010a; Yang et al. 2012; Farah et al. 2016 

ETP ALLb Poor/none Coustan-Smith et al. 2009; Patrick et al. 2014; Conter et al. 2016 

Pro- and pre-T-ALL (T-I and T-II)c Poor/none Schrappe et al. 2011; Patrick et al. 2014 

MRD positivity at various time points Poor Willemse et al. 2002; Schrappe et al. 2011; Gao et al. 2014; Borssén et al. 2016 

Cytogenetic featuresd   

Abnormal karyotype None Heerema et al. 1998; Karrman et al. 2009a 

Deletion of 6q None Schneider et al. 2000; Karrman et al. 2009a; Remke et al. 2009 

Trisomy 8 None Schneider et al. 2000; Karrman et al. 2009a 

Deletion of 11q or12p Unknown  

TCR partnersd   



LMO2 None van Grotel et al. 2008 

TLX1 None van Grotel et al. 2008 

HOXA9/10/11 Unknown  

Fusion genesd   

BCL11B-TLX3 Poor/none Cavé et al. 2004; Ballerini et al. 2008; van Grotel et al. 2008 

PICALM-MLLT10 Poore van Grotel et al. 2008 

STIL-TAL1 Poor/none Cavé et al. 2004; Ballerini et al. 2008; van Grotel et al. 2008; Mansur et al. 

2012; D'Angiò et al. 2015 

NUP214-ABL1 Unknown  

Gene mutations/deletionsd   

BCL11B None Gutierrez et al. 2011 

CDKN2A/B None Ramakers-van Woerden et al. 2001; Krieger et al. 2010; Kuchinskaya et al. 

2011; Karrman et al. 2015 

FBXW7 Poor/none Kox et al. 2010; Mansur et al. 2012; Jenkinson et al. 2013; Yuan et al. 2015 

LEF1 None Gutierrez et al. 2010b 

NOTCH1 Good/none Breit et al. 2006; van Grotel et al. 2008; Kox et al. 2010; Zuurbier et al. 2010; 

Mansur et al. 2012; Jenkinson et al. 2013; Fogelstrand et al. 2014; Gao et al. 

2014; Yuan et al. 2015 

NRAS None Yuan et al. 2015; Jenkinson et al. 2016 

PHF6 None Yuan et al. 2015 

PTEN None Mansur et al. 2012; Bandapalli et al. 2013; Jenkinson et al. 2016 

WT1 None Tosello et al. 2009 

CREBBP, DNM2, ECT2L, EED, ETV6, 

EZH2, IL7R, JAK1, JAK3, RB1, RELN, 

Unknown  



RUNX1, and SUZ12 

Epigenetic fatures   

Hypomethylated CpG island phenotype Poor/none Borssén et al. 2013, 2016 

ETP ALL, early T-cell precursor acute lymphoblastic leukemia; HR, high risk; IR, intermediate risk; MRD, minimal residual disease; WBC, white blood cell. 

aStatistically significant (P<0.05) impact on disease free survival, event free survival and/or overall survival. 

bDefined as CD1a-/CD8-/CD5(+)/cCD3+/CD7+ and expression of the myeloid- or stem cell-associated markers CD13, CD33, CD34, CD117, HLA-DR, 

CD11b, and CD65. 

cDouble negative for CD4 and CD8. 

dOnly cytogenetic aberrations, TCR partners, fusion genes, and gene mutations/deletions reported in ≥5% of pediatric T-ALL cases are included. 

eBased on only three cases. 
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