143 research outputs found
Quantum optical memory protocols in atomic ensembles
We review a series of quantum memory protocols designed to store the quantum
information carried by light into atomic ensembles. In particular, we show how
a simple semiclassical formalism allows to gain insight into various memory
protocols and to highlight strong analogies between them. These analogies
naturally lead to a classification of light storage protocols into two
categories, namely photon echo and slow-light memories. We focus on the storage
and retrieval dynamics as a key step to map the optical information into the
atomic excitation. We finally review various criteria adapted for both
continuous variables and photon-counting measurement techniques to certify the
quantum nature of these memory protocols
Heralded quantum entanglement between two crystals
Quantum networks require the crucial ability to entangle quantum nodes. A
prominent example is the quantum repeater which allows overcoming the distance
barrier of direct transmission of single photons, provided remote quantum
memories can be entangled in a heralded fashion. Here we report the observation
of heralded entanglement between two ensembles of rare-earth-ions doped into
separate crystals. A heralded single photon is sent through a 50/50
beamsplitter, creating a single-photon entangled state delocalized between two
spatial modes. The quantum state of each mode is subsequently mapped onto a
crystal, leading to an entangled state consisting of a single collective
excitation delocalized between two crystals. This entanglement is revealed by
mapping it back to optical modes and by estimating the concurrence of the
retrieved light state. Our results highlight the potential of rare-earth-ions
doped crystals for entangled quantum nodes and bring quantum networks based on
solid-state resources one step closer.Comment: 10 pages, 5 figure
Device-independent quantum key distribution secure against collective attacks
Device-independent quantum key distribution (DIQKD) represents a relaxation
of the security assumptions made in usual quantum key distribution (QKD). As in
usual QKD, the security of DIQKD follows from the laws of quantum physics, but
contrary to usual QKD, it does not rely on any assumptions about the internal
working of the quantum devices used in the protocol. We present here in detail
the security proof for a DIQKD protocol introduced in [Phys. Rev. Lett. 98,
230501 (2008)]. This proof exploits the full structure of quantum theory (as
opposed to other proofs that exploit the no-signalling principle only), but
only holds again collective attacks, where the eavesdropper is assumed to act
on the quantum systems of the honest parties independently and identically at
each round of the protocol (although she can act coherently on her systems at
any time). The security of any DIQKD protocol necessarily relies on the
violation of a Bell inequality. We discuss the issue of loopholes in Bell
experiments in this context.Comment: 25 pages, 3 figure
Scaling near the upper critical dimensionality in the localization theory
The phenomenon of upper critical dimensionality d_c2 has been studied from
the viewpoint of the scaling concepts. The Thouless number g(L) is not the only
essential variable in scale transformations, because there is the second
parameter connected with the off-diagonal disorder. The investigation of the
resulting two-parameter scaling has revealed two scenarios, and the switching
from one to another scenario determines the upper critical dimensionality. The
first scenario corresponds to the conventional one-parameter scaling and is
characterized by the parameter g(L) invariant under scale transformations when
the system is at the critical point. In the second scenario, the Thouless
number g(L) grows at the critical point as L^{d-d_c2}. This leads to violation
of the Wegner relation s=\nu(d-2) between the critical exponents for
conductivity (s) and for localization radius (\nu), which takes the form
s=\nu(d_c2-2). The resulting formulas for g(L) are in agreement with the
symmetry theory suggested previously [JETP 81, 925 (1995)]. A more rigorous
version of Mott's argument concerning localization due topological disorder has
been proposed.Comment: PDF, 7 pages, 6 figure
Characterising the impact of post-treatment storage on chemistry and antimicrobial properties of plasma treated water derived from microwave and DBD sources
The biological effects of atmospheric cold plasma generated reactive species are mediated through and at a liquid interface. The diversity of antimicrobial efficacy or intensity of effects may differ with respect to the plasma device or set up, and it is important to understand how these differences occur to advance understanding and successful applications. Thus, plasma treated water (PTW) from a microwave driven plasma source (PTW-MW) and plasma treated water from a di-electric barrier discharge system (PTW-DBD) were compared in terms of long lived reactive species chemical composition and antimicrobial activity. The influence of a post-treatment storage time (PTST), where reactive species in the gas phase were maintained in contact with the liquid was investigated. Nitrogen-based chemistry dominated in PTW-MW, with high concentrations of nitrous acid decomposing to nitrite and nitrate, while H2O2 and nitrate were predominant in PTW-DBD. PTST could enhance H2O2 concentrations in di-electric barrier PTW over time while nitrous acid, the main oxidative species in microwave driven PTW, decreased. This work highlights that plasma treated water presents a resource comprising a range of different compounds, stabilities and reactivities which may be tunable to specific applications
Localising the auditory N1m with event-related beamformers:localisation accuracy following bilateral and unilateral stimulation
The auditory evoked N1m-P2m response complex presents a challenging case for MEG source-modelling, because symmetrical, phase-locked activity occurs in the hemispheres both contralateral and ipsilateral to stimulation. Beamformer methods, in particular, can be susceptible to localisation bias and spurious sources under these conditions. This study explored the accuracy and efficiency of event-related beamformer source models for auditory MEG data under typical experimental conditions: monaural and diotic stimulation; and whole-head beamformer analysis compared to a half-head analysis using only sensors from the hemisphere contralateral to stimulation. Event-related beamformer localisations were also compared with more traditional single-dipole models. At the group level, the event-related beamformer performed equally well as the single-dipole models in terms of accuracy for both the N1m and the P2m, and in terms of efficiency (number of successful source models) for the N1m. The results yielded by the half-head analysis did not differ significantly from those produced by the traditional whole-head analysis. Any localisation bias caused by the presence of correlated sources is minimal in the context of the inter-individual variability in source localisations. In conclusion, event-related beamformers provide a useful alternative to equivalent-current dipole models in localisation of auditory evoked responses
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- …