Quantum networks require the crucial ability to entangle quantum nodes. A
prominent example is the quantum repeater which allows overcoming the distance
barrier of direct transmission of single photons, provided remote quantum
memories can be entangled in a heralded fashion. Here we report the observation
of heralded entanglement between two ensembles of rare-earth-ions doped into
separate crystals. A heralded single photon is sent through a 50/50
beamsplitter, creating a single-photon entangled state delocalized between two
spatial modes. The quantum state of each mode is subsequently mapped onto a
crystal, leading to an entangled state consisting of a single collective
excitation delocalized between two crystals. This entanglement is revealed by
mapping it back to optical modes and by estimating the concurrence of the
retrieved light state. Our results highlight the potential of rare-earth-ions
doped crystals for entangled quantum nodes and bring quantum networks based on
solid-state resources one step closer.Comment: 10 pages, 5 figure