264 research outputs found

    Single production of the top partners at high energy colliders

    Full text link
    The left-right twin HiggsHiggs (LRTHLRTH) model is a concrete realization of the twin HiggsHiggs mechanism, which predicts the existence of the top partner TT. In this paper, we consider production of TT associated with the top quark tt at the high energy linear e+e−e^{+}e^{-} collider (ILCILC) and the LHCLHC experiments, and its single production in future linac-ring type epep collider experiment. To compare our results with those of the littlest HiggsHiggs model with TT-parity, we also estimate production of the TT-even top partner T+T_{+} via the corresponding processes in these high energy collider experiments. A simply phenomenological analysis is also given.Comment: 21 pages, 10 figures; to be published in Nucl. Phys.

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Heavy Quark Fragmentation Functions for D-wave Quarkonium and Charmed Beauty Mesons

    Get PDF
    At the large transverse momentum region, the production of heavy-heavy bound-states such as charmonium, bottomonium, and bˉc\bar bc mesons in high energy e+e−e^+e^- and hadronic collisions is dominated by parton fragmentation. We calculate the heavy quark fragmentation functions into the D-wave quarkonium and bˉc\bar bc mesons to leading order in the strong coupling constant and in the non-relativistic expansion. In the bˉc\bar b c meson case, one set of its D-wave states is expected to lie below the open flavor threshold. The total fragmentation probability for a bˉ\bar b antiquark to split into the D-wave bˉc\bar b c mesons is about 2×10−52 \times 10^{-5}, which implies that only 2\% of the total pseudo-scalar ground state BcB_c comes from the cascades of these orbitally excited states.Comment: 26 pages in RevteX and 3 figures in postscript. Also available at http://www.ph.utexas.edu/~cheung/paper.htm

    Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking

    Get PDF
    © Voelzmann et al.The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer’s disease

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    The ETS Family Member TEL Binds to Nuclear Receptors RAR and RXR and Represses Gene Activation

    Get PDF
    Retinoic acid receptor (RAR) signaling is important for regulating transcriptional activity of genes involved in growth, differentiation, metabolism and reproduction. Defects in RAR signaling have been implicated in cancer. TEL, a member of the ETS family of transcription factors, is a DNA-binding transcriptional repressor. Here, we identify TEL as a transcriptional repressor of RAR signaling by its direct binding to both RAR and its dimerisation partner, the retinoid x receptor (RXR) in a ligand-independent fashion. TEL is found in two isoforms, created by the use of an alternative startcodon at amino acid 43. Although both isoforms bind to RAR and RXR in vitro and in vivo, the shorter form of TEL represses RAR signaling much more efficiently. Binding studies revealed that TEL binds closely to the DNA binding domain of RAR and that both Helix Loop Helix (HLH) and DNA binding domains of TEL are mandatory for interaction. We have shown that repression by TEL does not involve recruitment of histone deacetylases and suggest that polycomb group proteins participate in the process

    Engineering biomolecular microenvironments for cell instructive biomaterials

    Get PDF
    Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses is a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell “niche”. The cell “niche” comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.The authors thank Fundacao para a Ciencia e Tecnologia for C.A.C.'s PhD grant (SFRH/BD/61390/2009). This work was carried out under the scope of the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS
    • 

    corecore