122 research outputs found

    Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), a potential biological control agent for the submerged aquatic weed, Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae)

    Get PDF
    The leaf-mining fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), was investigated in its native range in South Africa, to determine its potential as a biological control agent for Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae), an invasive submerged macrophyte that is weedy in many parts of the world. The fly was found throughout the indigenous range of the plant in South Africa. High larval abundance was recorded at field sites with nearly all L. major shoots sampled ontaining larvae, with densities of up to 10 larvae per shoot. Adults laid batches of up to 15 eggs, usually on the abaxial sides of L. major leaves. The larvae mined internally, leaving the epidermal tissues of the upper and lower leaves intact. The larvae underwent three instars which took an average of 24 days and pupated within the leaf tissue, from which the adults emerged. Impact studies in the laboratory showed that H. lagarosiphon larval feeding significantly restricted the formation of L. major side branches. Based on its biology and damage caused to the plant, Hydrellia lagarosiphon could be considered as a useful biological control candidate for L. major in countries where the plant is invasive

    High-precision determination of the critical exponents for the lambda-transition of 4He by improved high-temperature expansion

    Full text link
    We determine the critical exponents for the XY universality class in three dimensions, which is expected to describe the λ\lambda-transition in 4{}^4He. They are obtained from the analysis of high-temperature series computed for a two-component λϕ4\lambda\phi^4 model. The parameter λ\lambda is fixed such that the leading corrections to scaling vanish. We obtain Îœ=0.67166(55)\nu = 0.67166(55), Îł=1.3179(11)\gamma = 1.3179(11), α=−0.0150(17)\alpha=-0.0150(17). These estimates improve previous theoretical determinations and agree with the more precise experimental results for liquid Helium.Comment: 8 pages, revte

    Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics

    Full text link
    In this article, we analyze the third of three papers, in which Einstein presented his quantum theory of the ideal gas of 1924-1925. Although it failed to attract the attention of Einstein's contemporaries and although also today very few commentators refer to it, we argue for its significance in the context of Einstein's quantum researches. It contains an attempt to extend and exhaust the characterization of the monatomic ideal gas without appealing to combinatorics. Its ambiguities illustrate Einstein's confusion with his initial success in extending Bose's results and in realizing the consequences of what later became to be called Bose-Einstein statistics. We discuss Einstein's motivation for writing a non-combinatorial paper, partly in response to criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments are based on Einstein's belief in the complete analogy between the thermodynamics of light quanta and of material particles and invoke considerations of adiabatic transformations as well as of dimensional analysis. These techniques were well-known to Einstein from earlier work on Wien's displacement law, Planck's radiation theory, and the specific heat of solids. We also investigate the possible role of Ehrenfest in the gestation of the theory.Comment: 57 pp

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    Physically Similar Systems - A History of the Concept

    Get PDF
    PreprintThe concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering (Froude, Bertrand, Reech), theoretical physics (van der Waals, Onnes, Lorentz, Maxwell, Boltzmann) and theoretical and experimental hydrodynamics (Stokes, Helmholtz, Reynolds, Prandtl, Rayleigh). In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century mathematics and mechanics: equations, functions and dimensional analysis. The terminology physically similar systems was proposed for this new characterization of similar systems by the physicist Edgar Buckingham. Related work by Vaschy, Bertrand, and Riabouchinsky had appeared by then. The concept is very powerful in studying physical phenomena both theoretically and experimentally. As it is not currently part of the core curricula of STEM disciplines or philosophy of science, it is not as well known as it ought to be

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    The management of diabetic ketoacidosis in children

    Get PDF
    The object of this review is to provide the definitions, frequency, risk factors, pathophysiology, diagnostic considerations, and management recommendations for diabetic ketoacidosis (DKA) in children and adolescents, and to convey current knowledge of the causes of permanent disability or mortality from complications of DKA or its management, particularly the most common complication, cerebral edema (CE). DKA frequency at the time of diagnosis of pediatric diabetes is 10%–70%, varying with the availability of healthcare and the incidence of type 1 diabetes (T1D) in the community. Recurrent DKA rates are also dependent on medical services and socioeconomic circumstances. Management should be in centers with experience and where vital signs, neurologic status, and biochemistry can be monitored with sufficient frequency to prevent complications or, in the case of CE, to intervene rapidly with mannitol or hypertonic saline infusion. Fluid infusion should precede insulin administration (0.1 U/kg/h) by 1–2 hours; an initial bolus of 10–20 mL/kg 0.9% saline is followed by 0.45% saline calculated to supply maintenance and replace 5%–10% dehydration. Potassium (K) must be replaced early and sufficiently. Bicarbonate administration is contraindicated. The prevention of DKA at onset of diabetes requires an informed community and high index of suspicion; prevention of recurrent DKA, which is almost always due to insulin omission, necessitates a committed team effort

    Interweaving Monitoring Activities and Model Development towards Enhancing Knowledge of the Soil-Plant-Atmosphere Continuum

    Full text link
    The study of water pathways from the soil to the atmosphere through plants-the so-called soil-plant-atmosphere continuum (SPAC)-has always been central to agronomy, hydrology, plant physiology, and other disciplines, using a wide range of approaches and tools. In recent years, we have been witnessing a rapid expansion of interweaving monitoring activities and model development related to SPAC in climatic, ecological, and applications other than the traditional agrohydrological, and it is therefore timely to review the current status of this topic and outline future directions of research. The initiative for the special section of Vadose Zone Journal on SPAC emanated from several sessions we recently organized in international conferences and meetings. With a view to the specific research questions covered in this special section, this article introduces and reviews SPAC underlying issues and then provides a brief overview of the invited contributions. We have grouped together the 15 contributions under three main sections related to the local, field, and landscape spatial scales of interests. Within these sections, the papers present their innovative results using different measuring techniques (from classic tensiometers and TDR sensors to more advanced and sophisticated equipment based on tomography and geophysics) and different modeling tools (from mechanistic models based on the Richards equation to more parametrically parsimonious hydrologic balance models). They provide a snapshot of the current state of the art while emphasizing the significant progress attained in this field of research. New technological developments and applications are also highlighted

    Toward a Multifaceted Heuristic of Digital Reading to Inform Assessment, Research, Practice, and Policy

    Get PDF
    In this commentary, the author explores the tension between almost 30 years of work that has embraced increasingly complex conceptions of digital reading and recent studies that risk oversimplifying digital reading as a singular entity analogous with reading text on a screen. The author begins by tracing a line of theoretical and empirical work that both informs and complicates our understanding of digital literacy and, more specifically, digital reading. Then, a heuristic is proposed to systematically organize, label, and define a multifaceted set of increasingly complex terms, concepts, and practices that characterize the spectrum of digital reading experiences. Research that informs this heuristic is used to illustrate how more precision in defining digital reading can promote greater clarity across research methods and advance a more systematic study of promising digital reading practices. Finally, the author discusses implications for assessment, research, practice, and policy
    • 

    corecore