165 research outputs found

    Randomized crossover comparison of proportional assist ventilation and patient-triggered ventilation in extremely low birth weight infants with evolving chronic lung disease

    Get PDF
    Background: Refinement of ventilatory techniques remains a challenge given the persistence of chronic lung disease of preterm infants. Objective: To test the hypothesis that proportional assist ventilation ( PAV) will allow to lower the ventilator pressure at equivalent fractions of inspiratory oxygen (FiO(2)) and arterial hemoglobin oxygen saturation in ventilator-dependent extremely low birth weight infants in comparison with standard patient-triggered ventilation ( PTV). Methods: Design: Randomized crossover design. Setting: Two level-3 university perinatal centers. Patients: 22 infants ( mean (SD): birth weight, 705 g ( 215); gestational age, 25.6 weeks ( 2.0); age at study, 22.9 days ( 15.6)). Interventions: One 4- hour period of PAV was applied on each of 2 consecutive days and compared with epochs of standard PTV. Results: Mean airway pressure was 5.64 ( SD, 0.81) cm H2O during PAV and 6.59 ( SD, 1.26) cm H2O during PTV ( p < 0.0001), the mean peak inspiratory pressure was 10.3 ( SD, 2.48) cm H2O and 15.1 ( SD, 3.64) cm H2O ( p < 0.001), respectively. The FiO(2) ( 0.34 (0.13) vs. 0.34 ( 0.14)) and pulse oximetry readings were not significantly different. The incidence of arterial oxygen desaturations was not different ( 3.48 ( 3.2) vs. 3.34 ( 3.0) episodes/ h) but desaturations lasted longer during PAV ( 2.60 ( 2.8) vs. 1.85 ( 2.2) min of desaturation/ h, p = 0.049). PaCO2 measured transcutaneously in a subgroup of 12 infants was similar. One infant met prespecified PAV failure criteria. No adverse events occurred during the 164 cumulative hours of PAV application. Conclusions: PAV safely maintains gas exchange at lower mean airway pressures compared with PTV without adverse effects in this population. Backup conventional ventilation breaths must be provided to prevent apnea-related desaturations. Copyright (c) 2007 S. Karger AG, Base

    Childcare, choice and social class: Caring for young children in the UK

    Get PDF
    This paper draws on the results of two qualitative research projects examining parental engagements with the childcare market in the UK. Both projects are located in the same two London localities. One project focuses on professional middle class parents, and the other on working class families, and we discuss the key importance of social class in shaping parents' differential engagement with the childcare market, and their understandings of the role childcare plays in their children's lives. We identify and discuss the different "circuits" of care (Ball et al 1995) available to and used by families living physically close to each other, but in social class terms living in different worlds. We also consider parents' relationships with carers, and their social networks. We conclude that in order to fully understand childcare policies and practices and families' experiences of care, an analysis which encompasses social class and the workings of the childcare market is needed

    Ultraviolet-Optical observations of the Seyfert 2 Galaxies NGC 7130, NGC 5135 and IC 3639: Implications for the Starburst-AGN Connection

    Get PDF
    We present and discuss HST (WFPC2 and FOC) images and UV GHRS spectra plus ground-based near UV through to near IR spectra of three Seyfert 2 nuclei (NGC 7130, NGC 5135 and IC 3639). These galaxies, together to Mrk 477, were selected from a bigger sample that comprises the 20 brightest Seyfert 2 nuclei, with the goal to study the origin of the UV-optical-near IR featureless continuum in Seyfert 2 nuclei. These four galaxies have bolometric luminosities, as computed with the four IRAS bands, of 10^11 Lsol. They are close enough to be resolved with HST the nuclear zone. This makes these Seyfert 2 galaxies benchmarks to study the Starburst-AGN connection in more distant galaxies. The data provide direct evidence of the existence of a central nuclear starburst that dominates the UV light, and that seem to be responsible for the origin of the so called featureless continuum. These starbursts are dusty and compact. They have sizes (from less than 100 pc to a few hundred pc) much smaller and closer to the nucleus than that seen in the prototype Seyfert 2 galaxy NGC 1068. The bolometric luminosity of these starbursts is similar to the estimated bolometric luminosities of their obscured Seyfert 1 nuclei, and thus they contribute in the same amount to the overall energetics of these galaxies.Comment: to be published in ApJ 505, September issue. The figures are in a tar files at: http://www.iaa.es/~rosa/Seyfert

    Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    Get PDF
    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses

    Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth

    Get PDF
    Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully-formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg-model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally-observed adhesion-driven contact inhibition of chemotaxis in the simulation causes randomly-distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.Comment: Thoroughly revised version, now in press in PLoS Computational Biology. 53 pages, 13 figures, 2 supporting figures, 56 supporting movies, source code and parameters files for computer simulations provided. Supporting information: http://www.psb.ugent.be/~romer/ploscompbiol/ Source code: http://sourceforge.net/projects/tst

    The Adult Human Brain Harbors Multipotent Perivascular Mesenchymal Stem Cells

    Get PDF
    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain

    The Emergence and Early Evolution of Biological Carbon-Fixation

    Get PDF
    The fixation of into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a “phylometabolic” tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than any modern pathway as a primitive universal ancestral form

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore