1,728 research outputs found

    Sequestration of Martian CO2 by mineral carbonation

    Get PDF
    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2

    Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA

    Get PDF
    This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Multiple recent publications on RNA sequencing (RNA-seq) have demonstrated the power of next-generation sequencing technologies in whole-transcriptome analysis. Vendor-specific protocols used for RNA library construction often require at least 100 ng total RNA. However, under certain conditions, much less RNA is available for library construction. In these cases, effective transcriptome profiling requires amplification of subnanogram amounts of RNA. Several commercial RNA amplification kits are available for amplification prior to library construction for next-generation sequencing, but these kits have not been comprehensively field evaluated for accuracy and performance of RNA-seq for picogram amounts of RNA. To address this, 4 types of amplification kits were tested with 3 different concentrations, from 5 ng to 50 pg, of a commercially available RNA. Kits were tested at multiple sites to assess reproducibility and ease of use. The human total reference RNA used was spiked with a control pool of RNA molecules in order to further evaluate quantitative recovery of input material. Additional control data sets were generated from libraries constructed following polyA selection or ribosomal depletion using established kits and protocols. cDNA was collected from the different sites, and libraries were synthesized at a single site using established protocols. Sequencing runs were carried out on the Illumina platform. Numerous metrics were compared among the kits and dilutions used. Overall, no single kit appeared to meet all the challenges of small input material. However, it is encouraging that excellent data can be recovered with even the 50 pg input total RNA

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Milestones in the Observations of Cosmic Magnetic Fields

    Get PDF
    Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. (Another long paragraph is omitted due to the limited space here)Comment: Invited Review (ChJA&A); 32 pages. Sorry if your significant contributions in this area were not mentioned. Published pdf & ps files (with high quality figures) now availble at http://www.chjaa.org/2002_2_4.ht

    Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets

    Full text link
    Magnetization switching in highly anisotropic single-domain ferromagnets has been previously shown to be qualitatively described by the droplet theory of metastable decay and simulations of two-dimensional kinetic Ising systems with periodic boundary conditions. In this article we consider the effects of boundary conditions on the switching phenomena. A rich range of behaviors is predicted by droplet theory: the specific mechanism by which switching occurs depends on the structure of the boundary, the particle size, the temperature, and the strength of the applied field. The theory predicts the existence of a peak in the switching field as a function of system size in both systems with periodic boundary conditions and in systems with boundaries. The size of the peak is strongly dependent on the boundary effects. It is generally reduced by open boundary conditions, and in some cases it disappears if the boundaries are too favorable towards nucleation. However, we also demonstrate conditions under which the peak remains discernible. This peak arises as a purely dynamic effect and is not related to the possible existence of multiple domains. We illustrate the predictions of droplet theory by Monte Carlo simulations of two-dimensional Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Priming of reach trajectory when observing actions: Hand-centred effects

    Get PDF
    When another person's actions are observed it appears that these actions are simulated, such that similar motor processes are triggered in the observer. Much evidence suggests that such simulation concerns the achievement of behavioural goals, such as grasping a particular object, and is less concerned with the specific nature of the action, such as the path the hand takes to reach the goal object. We demonstrate that when observing another person reach around an obstacle, an observer's subsequent reach has an increased curved trajectory, reflecting motor priming of reach path. This priming of reach trajectory via action observation can take place under a variety of circumstances: with or without a shared goal, and when the action is seen from a variety of perspectives. However, of most importance, the reach path priming effect is only evoked if the obstacle avoided by another person is within the action (peripersonal) space of the observer
    corecore