167 research outputs found

    Animal-related factors associated with moderate-to-severe diarrhea in children younger than five years in western Kenya: A matched case-control study

    Get PDF
    Background Diarrheal disease remains among the leading causes of global mortality in children younger than 5 years. Exposure to domestic animals may be a risk factor for diarrheal disease. The objectives of this study were to identify animal-related exposures associated with cases of moderate-to-severe diarrhea (MSD) in children in rural western Kenya, and to identify the major zoonotic enteric pathogens present in domestic animals residing in the homesteads of case and control children. Methodology/Principal findings We characterized animal-related exposures in a subset of case and control children (n = 73 pairs matched on age, sex and location) with reported animal presence at home enrolled in the Global Enteric Multicenter Study in western Kenya, and analysed these for an association with MSD. We identified potentially zoonotic enteric pathogens in pooled fecal specimens collected from domestic animals resident at children’s homesteads. Variables that were associated with decreased risk of MSD were washing hands after animal contact (matched odds ratio [MOR] = 0.2; 95% CI 0.08–0.7), and presence of adult sheep that were not confined in a pen overnight (MOR = 0.1; 0.02–0.5). Variables that were associated with increased risk of MSD were increasing number of sheep owned (MOR = 1.2; 1.0–1.5), frequent observation of fresh rodent excreta (feces/urine) outside the house (MOR = 7.5; 1.5–37.2), and participation of the child in providing water to chickens (MOR = 3.8; 1.2–12.2). Of 691 pooled specimens collected from 2,174 domestic animals, 159 pools (23%) tested positive for one or more potentially zoonotic enteric pathogens (Campylobacter jejuni, C. coli, non-typhoidal Salmonella, diarrheagenic E. coli, Giardia, Cryptosporidium, or rotavirus). We did not find any association between the presence of particular pathogens in household animals, and MSD in children. Conclusions and significance Public health agencies should continue to promote frequent hand washing, including after animal contact, to reduce the risk of MSD. Future studies should address specific causal relations of MSD with sheep and chicken husbandry practices, and with the presence of rodents

    The prevalence of Giardia infection in dogs and cats, a systematic review and meta-analysis of prevalence studies from stool samples

    Get PDF
    Giardia has a wide range of host species and is a common cause of diarrhoeal disease in humans and animals. Companion animals are able to transmit a range of zoonotic diseases to their owners including giardiasis, but the size of this risk is not well known. The aim of this study was to analyse giardiasis prevalence rates in dogs and cats worldwide using a systematic search approach. Meta-analysis enabled to describe associations between Giardia prevalence and various confounding factors. Pooled prevalence rates were 15.2% (95% CI 13.8-16.7%) for dogs and 12% (95% CI 9.2-15.3%) for cats. However, there was very high heterogeneity between studies. Meta-regression showed that the diagnostic method used had a major impact on reported prevalence with studies using ELISA, IFA and PCR reporting prevalence rates between 2.6 and 3.7 times greater than studies using microscopy. Conditional negative binomial regression found that symptomatic animals had higher prevalence rates ratios (PRR) than asymptomatic animals 1.61 (95% CI 1.33-1.94) in dogs and 1.94 (95% CI 1.47-2.56) in cats. Giardia was much more prevalent in young animals. For cats >6 months, PRR=0.47 (0.42-0.53) and in dogs of the same age group PRR=0.36 (0.32-0.41). Additionally, dogs kept as pets were less likely to be positive (PRR=0.56 (0.41-0.77)) but any difference in cats was not significant. Faecal excretion of Giardia is common in dogs and slightly less so in cats. However, the exact rates depend on the diagnostic method used, the age and origin of the animal. What risk such endemic colonisation poses to human health is still unclear as it will depend not only on prevalence rates but also on what assemblages are excreted and how people interact with their pets

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

    Get PDF
    Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010–2012) and Run 2 (2015–2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.publishedVersio

    Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment

    Get PDF
    A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Px′ = 0.01 ± 0.18, Py′ = −0.029 ± 0.027, Pz′ = 0.91 ± 0.10 and for the top-antiquark event sample they are Px′ = −0.02 ± 0.20, Py′ = −0.007 ± 0.051, Pz′ = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six OtW operator in the framework of an effective field theory. The obtained bounds are CtW ∈ [−0.9, 1.4] and CitW ∈ [−0.8, 0.2], both at 95% confidence level. [Figure not available: see fulltext.]

    Search for type-III seesaw heavy leptons in leptonic final states in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139   fb − 1 139 fb−1 of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level

    Configuration and performance of the ATLAS b-jet triggers in Run 2

    Get PDF
    Several improvements to the ATLAS triggers used to identify jets containing b-hadrons (b-jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the b-jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same b-jet identification efficiency compared to the performance in Run 1 (2011–2012). The efficiency to identify b-jets in the trigger, and the conditional efficiency for b-jets that satisfy offline b-tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the b-tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, b-jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic b-hadron decays by selecting events with geometrically overlapping muons and jets

    Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the production of a single top quark via left-handed flavour-changing neutral-current (FCNC) interactions of a top quark, a gluon and an up or charm quark. Two production processes are considered: u+ g→ t and c+ g→ t. The analysis is based on proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. The data set corresponds to an integrated luminosity of 139 fb- 1. Events with exactly one electron or muon, exactly one b-tagged jet and missing transverse momentum are selected, resembling the decay products of a singly produced top quark. Neural networks based on kinematic variables differentiate between events from the two signal processes and events from background processes. The measured data are consistent with the background-only hypothesis, and limits are set on the production cross-sections of the signal processes: σ(u+g→t)×B(t→Wb)×B(W→ℓν)<3.0pb and σ(c+g→t)×B(t→Wb)×B(W→ℓν)<4.7pb at the 95% confidence level, with B(W→ ℓν) = 0.325 being the sum of branching ratios of all three leptonic decay modes of the W boson. Based on the framework of an effective field theory, the cross-section limits are translated into limits on the strengths of the tug and tcg couplings occurring in the theory: |CuGut|/Λ2<0.057TeV- 2 and |CuGct|/Λ2<0.14TeV- 2. These bounds correspond to limits on the branching ratios of FCNC-induced top-quark decays: B(t→ u+ g) < 0.61 × 10 - 4 and B(t→ c+ g) < 3.7 × 10 - 4
    • …
    corecore