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Abstract

Background

Diarrheal disease remains among the leading causes of global mortality in children younger

than 5 years. Exposure to domestic animals may be a risk factor for diarrheal disease. The

objectives of this study were to identify animal-related exposures associated with cases of

moderate-to-severe diarrhea (MSD) in children in rural western Kenya, and to identify the

major zoonotic enteric pathogens present in domestic animals residing in the homesteads

of case and control children.

Methodology/Principal findings

We characterized animal-related exposures in a subset of case and control children (n = 73

pairs matched on age, sex and location) with reported animal presence at home enrolled in

the Global Enteric Multicenter Study in western Kenya, and analysed these for an associa-

tion with MSD. We identified potentially zoonotic enteric pathogens in pooled fecal speci-

mens collected from domestic animals resident at children’s homesteads. Variables that

were associated with decreased risk of MSD were washing hands after animal contact

(matched odds ratio [MOR] = 0.2; 95% CI 0.08–0.7), and presence of adult sheep that were

not confined in a pen overnight (MOR = 0.1; 0.02–0.5). Variables that were associated with

increased risk of MSD were increasing number of sheep owned (MOR = 1.2; 1.0–1.5),
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frequent observation of fresh rodent excreta (feces/urine) outside the house (MOR = 7.5;

1.5–37.2), and participation of the child in providing water to chickens (MOR = 3.8; 1.2–

12.2). Of 691 pooled specimens collected from 2,174 domestic animals, 159 pools (23%)

tested positive for one or more potentially zoonotic enteric pathogens (Campylobacter jejuni,

C. coli, non-typhoidal Salmonella, diarrheagenic E. coli, Giardia, Cryptosporidium, or rotavi-

rus). We did not find any association between the presence of particular pathogens in

household animals, and MSD in children.

Conclusions and significance

Public health agencies should continue to promote frequent hand washing, including after

animal contact, to reduce the risk of MSD. Future studies should address specific causal rela-

tions of MSD with sheep and chicken husbandry practices, and with the presence of rodents.

Author summary

Diarrheal disease is one of the leading causes of death worldwide in children younger than

5 years. Exposure to animals in homes may be a risk factor for diarrhea in children. To

test this, we studied a subset of children in the Global Enteric Multicenter Study (GEMS)

in rural western Kenya, whose caretakers reported the presence of animals in the chil-

dren’s homesteads. In GEMS, children with moderate-to-severe diarrhea (MSD) were

matched with children without MSD, who were of the same sex, similar age and who lived

in the same area. We asked questions about the presence and management of animals in

the children’s homesteads. We also collected fecal specimens from domestic animals pres-

ent at homesteads and tested these for microbes that could cause diarrheal disease in chil-

dren. We found that children who reportedly washed their hands after animal contact,

and who lived in a homestead with adult sheep that were not confined to a pen overnight,

had a lower risk of MSD. Children who lived in homesteads that owned more adult sheep,

or in which fresh rodent droppings were observed frequently, had a higher risk of MSD,

as did children who reportedly participated in providing water to chickens in the home-

stead. We did not find any association between the presence of particular pathogens in

household animals, and MSD in children.

Introduction

Diarrheal disease remains among the leading causes of global mortality in children younger

than 5 years [1, 2]. Although the mortality rate due to diarrheal disease in this age group in

Africa has decreased by nearly 4% per year since 2000, it remains unacceptably high: it is esti-

mated that 12% of deaths in children younger than five years in Africa are due to diarrhea,

amounting to almost half a million childhood deaths annually [2]. While mortality rates have

decreased, the incidence of diarrheal disease in young children in low- and middle-income

countries has shown little change, from 3.4 episodes/child year in 1990 to 2.9 episodes/child

year in 2010 [3]. Persistently high incidence rates in these countries are concerning because

early childhood diarrhea may have long-term effects on child growth and development [4, 5].

Data characterising risk factors and etiologies of diarrheal disease in children in these settings

are important for focusing interventions to decrease associated morbidity and mortality rates.
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Many viral, bacterial and protozoal pathogens have been demonstrated as causes of diarrheal

disease in children younger than 5 years in developing countries [6]. Contact with domestic ani-

mals, including livestock, poultry and companion animals, has been shown to play a role in the

epidemiology and transmission to people of a number of these pathogens [7, 8] including Cam-
pylobacter spp. [9–11], non-typhoidal Salmonella [11, 12], diarrheagenic Escherichia coli strains

[12, 13], Cryptosporidium spp. [12–14] and Giardia duodenalis [15]. In addition, some reports

implicate dogs as a possible source of human infections with unusual strains of rotavirus [16,

17]. Livestock and poultry play a significant role in rural livelihoods in developing countries,

providing a variety of benefits to poor households, such as animal-source food (energy-dense

food with high biological-value protein, rich in micronutrients), draft power for ploughing and

transport, nutrient recycling through manure, income through sale of animals or their products,

as well as a form of savings and insurance [18]; however, animal husbandry may also have nega-

tive impacts on households, including the transmission of zoonotic and foodborne diseases. In a

meta-analysis of demographic health survey data from 30 sub-Saharan African countries exam-

ining associations between child health outcomes and household ownership of livestock, Kaur

et al [19] found a negative association between livestock and stunting (an indicator of chronic

malnutrition), a positive association between livestock and all-cause mortality in children, and

no association between livestock and diarrheal illness. In a systematic review and meta-analysis

of human diarrhea infections associated with domestic exposure to food-producing animals,

Zambrano et al. [20] found consistent evidence of a positive association between exposure and

diarrheal illness in people, across a range of animal species and enteric pathogens. Close contact

with domestic animals (such as animals sleeping in the house or room) is also associated with

impaired growth in children [21, 22]. Considering the potential positive benefits of animal hus-

bandry to rural livelihoods in resource-poor settings, there is a need to identify specific hus-

bandry-related practices associated with diarrheal illness. Such evidence can serve as bases for

interventions to reduce transmission of enteric pathogens to household members, especially to

children, who are particularly vulnerable to mortality, sequelae and developmental consequences

of diarrheal disease. Identifying etiologies of diarrheal illness in household members and concur-

rent infections in domestic animals may provide further utility for these efforts [23–25].

The Global Enteric Multicenter Study (GEMS), a large-scale case-control study designed to

identify the etiology and population-based burden of diarrheal disease in children younger

than 5 years in developing countries [6, 26], provided an opportunity to study the association

between animal-related exposures and diarrheal illness in household children at a rural site in

western Kenya. GEMS was a 3-year, prospective, age-stratified, matched case-control study of

moderate-to-severe diarrheal illness in children aged 0–59 months, residing in populations

under demographic surveillance at four sites in sub-Saharan Africa and three sites in south

Asia. The methodology [26–28] and main findings [29] of GEMS have been published. The

GEMS Zoonotic Enteric Diseases (GEMS-ZED) sub-study was conducted among a subset of

case children and their matched controls enrolled at one of the six GEMS sentinel health cen-

ters in rural western Kenya. The objectives of the GEMS-ZED study were to identify animal-

related exposures associated with cases of moderate-to-severe diarrhea (MSD) in children, and

to identify the major zoonotic enteric pathogens present in the domestic animals residing in

the homesteads of case and control children.

Materials and methods

Study site

The GEMS sentinel health center for this study was St Elizabeth Mission Hospital in Lwak

(henceforth referred to as Lwak Hospital), located in Rarieda sub-county, Siaya County
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(formerly Nyanza Province) in western Kenya. Lwak Hospital is the designated referral facility

for population-based infectious disease surveillance (PBIDS) conducted in the surrounding 33

villages by the Kenya Medical Research Institute (KEMRI) and the U.S. Centers for Disease

Control and Prevention (CDC) [30]. The area also falls within the KEMRI/CDC health and

demographic surveillance system (HDSS) site in western Kenya [31]. The HDSS provides

general demographic and health information including population age-structure, migration,

fertility rates, birth and death rates, verbal autopsy, access and utilization of health care for

approximately 220,000 inhabitants in 55,000 households. The primary economic livelihood is

subsistence farming and fishing, and an estimated 70% of the population lived below the pov-

erty line in 2003 [32]. The area is culturally homogeneous, with 95% of people being ethnically

Luo [33]. Households in the PBIDS villages are clustered into compounds composed of related

family units, with most compounds having between one and five family units [33]. Animal

husbandry is common: 89% of compounds own at least one species of livestock or poultry,

with 86% owning poultry (median flock size: 10), 49% cattle (median herd size: 4), 48% goats

(median herd size: 4) and 18% sheep (median herd size: 3) (KEMRI/CDC HDSS data for

2008). Among compounds that own livestock, approximately one-half also own cats and/or

dogs (International Emerging Infections Program–Zoonoses Project data for 2009). Rodents,

including black rats (Rattus rattus), are also commonly present in and around houses in the

PBIDS site [34].

GEMS

From January 31, 2008 through January 29, 2011, children 0–59 months old who sought care

at selected sentinel health centers (including Lwak Hospital) and belonged to the HDSS popu-

lation were screened for diarrhea. To be eligible for inclusion in GEMS, the diarrhea episode

had to meet the case definition for MSD [29], which was three or more loose stools within the

previous 24 h, with onset within the previous 7 days after a period of at least 7 diarrhea-free

days, with one or more of the following: sunken eyes; loss of skin turgor; intravenous rehydra-

tion administered or prescribed; dysentery; or hospitalized with diarrhea or dysentery. Each

GEMS site restricted enrollment to the first nine eligible cases per age stratum per fortnight.

Three age strata were targeted: infants (0–11 months), toddlers (12–23 months), and children

(24–59 months). For every enrolled case, one to three children without diarrhea were enrolled

as controls. Controls were matched to individual cases by age (within 2 months of age for

patients aged 0–23 months, and within 4 months of age for patients aged 24–59 months), sex,

and residence (same or nearby village as patient). Potential controls were randomly selected

from the KEMRI/CDC HDSS database and enrolled during a home visit within 14 days of the

matched case. Potential controls who had diarrhea in the previous 7 days were ineligible. At

enrollment, primary caregivers (parent or other caretaker) of cases and controls were inter-

viewed to obtain demographic, epidemiological and clinical information. In addition, each

case and control provided at least 3 g of fresh stool, which was submitted to the laboratory for

identification of enteric pathogens using standard methods as described by Panchalingam

et al. [28].

GEMS-ZED substudy

The GEMS-ZED substudy collected and analysed additional data on animal-related factors

from a subset of GEMS case and matched control children with reported animal presence at

home. From November 4, 2009 through February 4, 2011, all cases enrolled into GEMS at

Lwak Hospital were screened for inclusion in the GEMS-ZED study. (Enrollment into GEMS

continued for a short period after the official end date of January 29, 2011, during which time
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3 case-control pairs were enrolled into GEMS-ZED. Data from the GEMS study [laboratory

test results and wealth index] are not available for these 3 pairs.) Between zero and six cases

per fortnight (median of two) were enrolled into GEMS at Lwak Hospital during the GEMS-

ZED study period. Only cases and controls whose primary caregiver reported presence of ani-

mals (domestic animals as well as peridomestic wild rodents) at the child’s compound during

the GEMS enrollment interview were considered eligible. For each eligible case, the first eligi-

ble GEMS-enrolled matched control was identified, resulting in one-to-one matching in the

GEMS-ZED dataset. If no eligible child could be identified among the GEMS set of one to

three matched controls, then the case was not enrolled into GEMS-ZED. Caregivers of eligible

cases and controls were approached for enrollment into the GEMS-ZED study during a sepa-

rate home visit that took place within 2 weeks of their enrollment into the GEMS study. Writ-

ten informed consent for participation in the study was sought from the primary caregiver, as

well as from the head of the compound of residence of each eligible child; only compounds in

which both individuals provided consent were enrolled. Compounds were excluded if the

child participating in GEMS had died subsequent to enrollment, or if no domestic animals

were found to be resident (for example, if animals had died or were sold subsequent to GEMS

enrollment).

Following enrollment, both the head of the compound and the child’s caregiver were inter-

viewed using a standard questionnaire. The questionnaire consisted of two parts: the first part

dealt with residence and husbandry of domestic animals in the compound (livestock, poultry,

dogs and cats), as well as observations relating to the presence of rodents in and around the

compound, and was asked of the person in the compound responsible for the management of

animals (typically the head of the compound). The second part dealt with information specific

to the participating child, relating to exposures to animals and their environment, and was

asked of the child’s caregiver. A summary of the items included in the questionnaire is pre-

sented in S1 Table.

At the enrollment visit, fecal specimens were collected from a convenience sample of

domestic animals resident at the compound. Specimens from a single species and age category

(young, unweaned animals vs. older animals) were pooled together, with specimens from a

maximum of five animals collected in a single pool, and a maximum of two pools per species

and age category combination (i.e. a maximum of ten animals per species and age category

combination were sampled from a compound). A previous study showed good agreement of

bacterial culture results between individual and pooled fecal samples of five individuals per

pool [35]. Between 3 and 10 g of feces were collected directly from the rectum of larger animals

(cattle, sheep, goats and adult dogs). For smaller animals (cats and young dogs), three moist-

ened cotton-tipped swabs were used to collect samples from the animal’s rectum and placed

directly into transport media (two in modified Cary Blair and one in buffered glycerol saline);

whole feces were not routinely collected from smaller animals.

For poultry, groups of birds of a single species (chickens or ducks) were confined overnight

on a sheet of thick plastic. Owners were asked to confine approximately five birds per group,

and not more than two groups of birds per species. Fecal specimens from a single pool of ani-

mals were mixed in a stool cup. Following thorough mixing of the pooled feces, two cotton-

tipped swabs were inserted into the feces and then placed in a vial containing modified Cary

Blair transport medium. A third swab was placed in a vial containing buffered glycerol saline.

All specimen containers were clearly labelled and placed in a sealed bag in a coolbox with ice-

packs for transport to the laboratory.

Identification of potentially zoonotic enteric pathogens in animal specimens (Campylobac-
ter jejuni, Campylobacter coli, non-typhoidal Salmonella, diarrheagenic E. coli, Cryptosporid-
ium, Giardia, and rotavirus) was carried out using an identical protocol to that described for
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the human stool specimens tested in GEMS [28]. Briefly, bacterial agents were isolated and

identified using conventional culture techniques. Three putative Escherichia coli colonies of

different morphology types were pooled and analysed by multiplex PCR that detect targets for

enterotoxigenic (ETEC), enteroaggregative (EAEC), enteropathogenic (EPEC), and enterohae-

morrhagic E. coli (EHEC). The following gene targets defined each E. coli pathotype: ETEC

(either eltB for heat-labile toxin [LT], estA for heat-stable toxin [ST], or both), ST-ETEC (either

eltB and estA, or estA only), typical EPEC (bfpA with or without eae), atypical EPEC (eae with-

out either bfpA, stx1, or stx2), EAEC (aatA, aaiC, or both), and EHEC (eae with stx1, stx2, or

both, and without bfpA). Commercial immunoassays were used to detect rotavirus (ProSpecT

Rotavirus kit, Oxoid, Basingstoke, UK), Giardia and Cryptosporidium spp. (TechLab, Inc.,

Blacksburg, VA, USA). Immunoassays were only performed on whole fecal specimens of ade-

quate volume (� 3 g), and were therefore not completed for the majority of cat specimens,

because volumes from this species were often inadequate.

To better understand the zoonotic potential, we genotyped Cryptosporidium parasites from

immunoassay-positive animal fecal specimens. DNA was extracted from 0.5 ml of fecal speci-

mens using a FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA). Cryptosporidium
species present were differentiated by PCR-restriction fragment length polymorphism (RFLP)

analysis of the small subunit (SSU) rRNA gene, and confirmed by DNA sequencing of the

PCR products [36].

Data analysis

Data were analysed using R statistical software version 3.1.3 [37]. We used conditional logistic

regression (clogit function applying the exact method in R package ‘survival’ [38]) with one-

to-one matching to identify animal-related exposures that were significantly associated with

MSD.

Exposure variables were screened for inclusion in the multivariable model using univariable

conditional logistic regression. As part of the screening process, each exposure variable was

evaluated for potential recoding. Husbandry-related variables for which values were condi-

tional upon residence of the species in question were evaluated and recoded if this made

biological sense. For example, the question “Do adult sheep enter the cooking area?’” was con-

ditional on residence of adult sheep in the compound. If no adult sheep were resident, the

response was recoded as “No–no adult sheep present” rather than a missing value, and com-

pared against “No–adult sheep present but do not enter cooking area” and “Yes–adult sheep

present and enter cooking area”. For these variables, the null state (species not resident) was

taken as the reference level. Variables related to exposures of children to animals and their

environments were kept as binary variables. For example, the question “Does the child play in

an area of the compound where adult sheep defecate?” had one of two responses: ‘no’ if no

adult sheep were resident in the compound or adult sheep were resident but the child did not

play in the area where they defecated, and ‘yes’ if there were adult sheep resident and the child

played in the area where they defecated. For categorical variables with four or more categories,

we created new binary variables by combining categories based on frequencies. For example,

the original four levels for frequency of observation of rodents or their excreta (never, seldom,

often or daily) were dichotomised to never/seldom vs. often/daily. Both the original and new

variables were tested in the univariable analysis. Continuous variables (e.g. number of chickens

owned) were categorised into three categories [category 1: zero values; category 2: values

greater than zero and less than or equal to the median value (excluding zeros); category 3: val-

ues greater than the median value (excluding zeros)]; both the original continuous variable

and the new categorical variable were assessed in the univariable analysis. Variables with a
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significant number of missing values (>10% of observations) were discarded. Variables with a

Wald test p-value greater than 0.2 on univariable analysis were excluded from further analyses.

If both the original and recoded variable had a p-value below the threshold of 0.2, the one with

the smaller p-value was retained.

After the univariable screening, we assessed collinearity between the selected exposure vari-

ables using condition indices (colldiag function in R package ‘perturb’ [39]). A condition

index is a number ranging from 1 to infinity that is computed from data on a set of exposure

variables–the higher the condition index, the greater the amount of collinearity [40]. The con-

dition indices were investigated by calculating the variance decomposition proportion (VDP)

for each condition index over 30, beginning with the largest. Exposure variables with a VDP

>0.5 were considered potentially collinear. In cases where it made biological sense to do so,

collinear variables were combined to create a new categorical variable. For example, the collin-

ear variables “Chicken manure used in farm” and “Chicken manure used in the compound”

were combined to create a variable “Chicken manure used”. When this did not make biological

sense, or when the new variable still exhibited collinearity, the collinear variable with the

higher univariable p-value was excluded. Remaining variables were taken forward for consid-

eration in the multivariable conditional logistic regression model.

We compared main effects models using Akaike’s information criterion (AIC), whereby

models with a smaller AIC are considered more optimal. We used a forward stepwise regres-

sion process to select exposure variables to retain in the model. Missing values were handled

through multiple imputation (R package ‘mice’ [41]). Building of the main effects model was

stopped when the addition of a variable resulted in an increase in the AIC. We assessed inter-

actions between variables in the final main effects model by adding two-way interaction terms

to the model and evaluating their effect on the AIC.

For evaluation of the final model, we identified outliers and influential pairs, using the

transformation method described in [42] and applying a Bonferroni outlier test. We computed

leverage values and delta β statistics to identify influential pairs (in R package ‘car’ [43]). To

determine if these pairs were having an undue effect on the model, we refit the model with

them omitted.

In GEMS, a wealth index quintile for households was generated by principle component

analysis of thirteen household assets [26, 44]. The wealth index quintile was forced into the

final model as an ordinal variable to evaluate the potential confounding effect of wealth.

Ethics statement

The GEMS protocol was approved by the KEMRI Scientific and Ethical Review Committee

(protocol no. 1155) and the Institutional Review Board at the University of Maryland, School

of Medicine, Baltimore, MD, USA. The Centers for Disease Control and Prevention, Atlanta,

GA, USA, formally deferred to the IRB at the University of Maryland for review (protocol no.

5038). Written informed consent was obtained from the parent or primary caretaker of each

participant before initiation of study activities. The GEMS-ZED study protocol was approved

by the KEMRI Scientific and Ethics Review Unit (protocol no. 1572) and the CDC Institu-

tional Review Board (protocol no. 5683). Written informed consent for participation in the

study was provided by the parent or primary caretaker of each participant, as well as from

the head of the compound of residence of each participant. Protocols for animal involvement

were reviewed and approved by the KEMRI and CDC Institutional Animal Care and Use

Committees (protocol no. SSC 1572 and 2088OREMULX, respectively). CDC IACUC proto-

cols comply with the Animal Welfare Act (AWA) regulations promulgated by the United

States Department of Agriculture (USDA) under Title 9, Code of Federal Regulations, Parts
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1–3 as well as the Public Health Service Policy on Humane Care and Use of Laboratory Ani-

mals (PHS Policy) administered by the National Institutes of Health (NIH), Office of Labora-

tory Animal Welfare (OLAW). In Kenya, all vertebrates are protected under Cap 360 (the

Prevention of Cruelty to Animals Act) (1963, revised 1983).

Results

A flow diagram showing the enrollment of children into the GEMS-ZED study is shown in Fig

1. Of the 90 children with MSD enrolled at Lwak Hospital from November 4th, 2009 through

February 4th, 2011, 73 of their households participated in GEMS-ZED, along with 73 control

households matched on age, sex and location of the case and control children. The median

time between enrollment into GEMS and enrollment into GEMS-ZED was 4 days (range:

0–13 days).

Residence (presence/absence) of particular animal species did not differ significantly

between case and control compounds based on the exact McNemar’s test values (Table 1). The

wealth index quintile distribution also did not differ between case and control compounds

(p = 0.4).

During the screening process, 497 exposure variables were evaluated (including recoded

variables). Of these, 100 variables were discarded because they were not applicable or had>10%

missing observations. Of the remaining 397 variables, 45 were selected after screening using

univariable conditional logistic regression (Wald test p-value� 0.2). Results of the univariable

analysis for these variables are presented in S2 Table. After assessment of these variables for col-

linearity, and combination or exclusion of collinear variables, 37 variables were available for

inclusion in the multivariable model (S3 Table). Results of the final model are shown in Table 2.

All two-way interactions between variables in the final model were assessed; none resulted in a

decrease in the AIC. We also tested for two-way interactions between age group and the main

effects in the final model. No interaction terms were significant, meaning that the association

between the main effects and MSD did not vary significantly by age group.

Variables that were associated with decreased risk of MSD were washing hands after animal

contact, and presence of adult sheep that were not confined in a pen overnight. Variables that

were associated with increased risk of MSD were increasing number of sheep owned, frequent

observation of fresh rodent excreta (feces/urine) outside the house, and participation of the

child in providing water to chickens. Inclusion of the wealth index did not result in a substan-

tial change in the log odds ratio of the variables in the final model (<20% change).

In the evaluation of the final model, three pairs were detected as outliers or influential.

When we refit the model with these pairs omitted, the same variables as in Table 2 remained in

the final model, with the exception that the variable “Adult sheep sleeping in the pen” was

replaced by the variable “Distance of sleeping area between child and adult sheep”. Compared

with the reference level of no adult sheep, the matched adjusted odds ratio was 0.01 (95% CI

0–0.2) for a distance of 30m or more, and 0.05 (95% CI 0.01–0.04) for a distance of less than

30m.

Laboratory results

We collected fecal specimens of acceptable quality for diagnostic testing from 2,174 domestic

animals of eight species, resulting in a total of 691 pools (median of 5 and range of 1 to 10

pools per compound). Of these, 159 pools (23%) tested positive for one or more potentially

zoonotic enteric pathogens (Campylobacter jejuni, C. coli, non-typhoidal Salmonella, diarrhea-

genic E. coli, Giardia, Cryptosporidium, or rotavirus). Test results for particular pathogens by

host species and age group are given in Table 3. Species with the highest proportion of positive
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Fig 1. Flow diagram showing selection and enrollment of case and control children into the GEMS-ZED

study of moderate-to-severe diarrhea in children in western Kenya.

https://doi.org/10.1371/journal.pntd.0005795.g001
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pools for particular pathogens were chickens for C. jejuni [18/231 (7.8%)] and non-typhoidal

Salmonella [26/231 (11.3%)]; goats for C. coli [6/106 (5.7%)]; donkeys for diarrheagenic E. coli
[1/12 (8.3%)]; dogs for Giardia [19/69 (27.5%)] and Cryptosporidium [4/69 (5.8%)]; and cattle

for rotavirus [4/153 (2.6%)].

Domestic animals from 45/73 (61%) compounds at which a child with MSD resided tested

positive to one or more pathogens, compared with 44/73 (60%) compounds with a control

child. There were no significant associations on univariable conditional logistic regression

Table 1. Ownership of domestic animals by the 73 matched pairs of case-control households enrolled in the GEMS-ZED study of moderate-to-

severe diarrhea in children in western Kenya.

Species Cases Controls Exact McNemar’s test p-value

Owner Non-owner

Cattle Owner 33 16 0.6

Non-owner 20 4

Goats Owner 31 15 1

Non-owner 16 11

Sheep Owner 6 13 0.3

Non-owner 20 34

Chickens Owner 69 2 1

Non-owner 1 1

Ducks Owner 0 4 1

Non-owner 5 64

Donkeys Owner 0 7 0.3

Non-owner 3 63

Dogs Owner 27 12 0.3

Non-owner 19 15

Cats Owner 19 14 0.1

Non-owner 25 15

https://doi.org/10.1371/journal.pntd.0005795.t001

Table 2. Results of the final multivariable conditional logistic regression model of animal-related factors associated with moderate-to-severe diar-

rhea in children younger than 5 years in western Kenya (Akaike information criterion: 76.02).

Risk Factor Matched crude odds ratio (95% CI) Matched adjusted odds ratio (95% CI) p-value

Child washes hands after contact with animals

No Reference level

Yes 0.4 (0.2–0.9) 0.2 (0.08–0.7) 0.008

Adult sheep sleeping in the pen

No adult sheep Reference level

Adult sheep sleep outside a pen 0.3 (0.1–0.9) 0.1 (0.02–0.5) 0.005

Adult sheep sleep in pen 2.1 (0.6–6.8) 0.6 (0.09–3.6) 0.6

Total number of sheep* 1.0 (1.0–1.1) 1.2 (1.0–1.5) 0.002

Fresh rodent excreta (feces/urine) observed outside the house

Never/seldom Reference level

Daily/often 5.0 (1.4–17.3) 7.5 (1.5–37.2) 0.005

Child’s presence during watering the chickens

No Reference level

Yes 2.6 (1.1–5.9) 3.8 (1.2–12.2) 0.02

*Odds ratio for each additional sheep

https://doi.org/10.1371/journal.pntd.0005795.t002
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between the presence of particular pathogens in domestic animals residing in compounds, and

MSD in the participating child from the compound (Table 4). When considering the children’s

GEMS laboratory results, we found 21 instances in which the pathogen identified in the child

Table 3. Test results for potential zoonotic enteric pathogens in pooled fecal samples collected from domestic animals resident in the home-

steads of case and control children enrolled in the GEMS-ZED study of moderate-to-severe diarrhea in children in western Kenya.

Species Age

group

Campylobacter

jejuni

Campylobacter

coli

Non-typhoidal

Salmonella

Diarrheagenic

Escherichia coli

Giardia Cryptosporidium Rotavirus

Cattle Total 2/155 (2.6%) 1/155 (0.6%) 1/155 (0.6%) 2/149 (1.3%) 8/153

(5.2%)

1/153 (0.6%) 4/153

(2.6%)

Adults 1/114 (0.9%) 1/114 (0.9%) 1/114 (0.9%) 1/108a (0.9%) 1/113

(0.9%)

0/113 (0%) 1/113

(0.9%)

Young 1/39 (2.6%) 0/39 (0%) 0/39 (0%) 1/39b (2.6%) 7/38

(18.4%)

1/38 (2.6%) 2/38

(5.3%)

Goats Total 2/106 (1.9%) 6/106 (5.7%) 3/106 (2.8%) 2/81 (2.5%) 5/106

(4.7%)

0/105 (0%) 0/105 (0%)

Adults 2/91 (2.2%) 4/91 (4.4%) 2/91 (2.2%) 2/72c (2.8%) 5/91

(5.5%)

0/90 (0%) 0/90 (0%)

Young 0/10 (0%) 1/10 (10%) 0/10 (0%) 0/7 (0%) 0/10 (0%) 0/10 (0%) 0/10 (0%)

Sheep Total 0/54 (0%) 0/54 (0%) 1/54 (1.9%) 2/43 (4.7%) 11/53

(20.8%)

0/53 (0%) 1/53

(1.9%)

Adults 0/45 (0%) 0/45 (0%) 1/45 (2.2%) 2/36d (5.6%) 6/44

(13.6%)

0/44 (0%) 0/44 (0%)

Young 0/6 (0%) 0/6 (0%) 0/6 (0%) 0/5 (0%) 4/6

(66.7%)

0/6 (0%) 1/6

(16.7%)

Chicken Total 18/231 (7.8%) 3/231 (1.3%) 26/231 (11.3%) 13/172 (7.6%) 9/224

(4%)

11/224 (4.9%) 3/224

(1.3%)

Adults 12/141 (8.5%) 3/141 (2.1%) 17/141 (12.1%) 12/108e (11.1%) 8/134

(6%)

4/134 (3%) 3/134

(2.2%)

Young 2/43 (4.7%) 0/43 (0%) 5/43 (11.6%) 0/31 (0%) 0/43 (0%) 5/43 (11.6%) 0/43 (0%)

Ducks Total 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%) 0/5 (0%)

Adults 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%)

Young NA NA NA NA NA NA NA

Donkeys Total 0/12 (0%) 0/12 (0%) 0/12 (0%) 1/12 (8.3%) 0/12 (0%) 0/12 (0%) 0/12 (0%)

Adults 0/10 (0%) 0/10 (0%) 0/10 (0%) 1/10f (10%) 0/10 (0%) 0/10 (0%) 0/10 (0%)

Young 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%) 0/2 (0%)

Dog Total 4/70 (5.7%) 2/70 (4.3%) 5/70 (7.1%) 1/62 (1.6%) 19/69

(27.5%)

4/69 (5.8%) 0/69 (0%)

Adults 3/69 (4.3%) 2/69 (2.9%) 5/69 (7.2%) 1/62g (1.6%) 19/69

(27.5%)

4/69 (5.8%) 0/69 (0%)

Young 1/1 (100%) 0/1 (0%) 0/1 (0%) NA NA NA NA

Cats Total 3/47 (6.4%) 1/47 (2.1%) 4/47 (8.5%) 0/45 (0%) 0/1 (0%) 0/1 (0%) 0/1 (0%)

Adults 3/43 (7%) 1/47 (2.1%) 4/43 (9.3%) 0/41 (0%) NA NA NA

Young 0/3 (0%) 0/3 (0%) 0/3 (0%) 0/3 (0%) NA NA NA

Total number of pools may not equal the sum of adult and young pools, due to the presence of some mixed pools of adult and young.
aenteroaggregative (EAEC)
benteropathogenic (EPEC)
cone EAEC, one EPEC
denterotoxigenic (ETEC)
efive ETEC, four EAEC, three EPEC
fETEC
gEAEC

https://doi.org/10.1371/journal.pntd.0005795.t003
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was also identified in one or more species of domestic animals residing in the compound

(Table 5).

Nineteen pooled specimens positive for Cryptosporidium spp. by immunoassay were ana-

lysed by PCR, including 14 pooled specimens from chickens, 4 from dogs, and 1 from calves.

Among them, 7 chicken specimens and the bovine specimen generated the expected PCR

products. RFLP analysis indicated the presence of C. meleagridis in 6 chicken specimens, C.

bovis in one chicken specimen, and C. parvum in one bovine specimen. None of the canine

specimens analysed were positive by PCR.

Discussion

We identified several animal-related factors associated with MSD in children younger than 5

years from compounds in rural western Kenya in which one or more species of domestic

Table 4. Univariable conditional logistic regression results of pathogens identified in domestic animals resident in compounds of children with

and without moderate-to-severe diarrhea enrolled in the GEMS-ZED study.

Pathogens identified in resident domestic animals Status of enrolled children Matched odds ratio (95% CI) p-value

Case (%) n = 73 Control (%) n = 73

One or more pathogens identified 45 (61%) 44 (60%) 1

(0.6–2.0)

0.9

Giardia 20 (27%) 20 (27%) 1

(0.5–2.1)

1

Non-typhoidal Salmonella 10 (14%) 19 (26%) 0.4

(0.2–1.1)

0.07

Diarrheagenic Escherichia coli 10 (14%) 10 (14%) 1

(0.4–2.7)

1

Campylobacter jejuni 9 (12%) 12 (16%) 0.7

(0.3–1.8)

0.5

Cryptosporidium 7 (10%) 7 (10%) 1

(0.4–2.9)

1

Campylobacter coli 5 (7%) 7 (10%) 0.6

(0.1–2.5)

0.5

Rotavirus 5 (7%) 3 (4%) 1.7

(0.4–7.0)

0.5

https://doi.org/10.1371/journal.pntd.0005795.t004

Table 5. Instances in which a pathogen identified in a child was also identified in one or more species of domestic animals residing in the child’s

compound.

Pathogen Number of positive child-

animal pairs

Status of positive child (number of

child-animal pairs)

Species of positive animal(s) in household (number

of child-animal pairs)

Giardia 9 Case (3) Dog and sheep (1); goat (1), sheep (1)

Control (6) Chicken (1); dog (3); goat (1); sheep (1)

Diarrheagenic

Escherichia coli

4 Case* (3) Chicken, cattle, goat and sheep (1); chicken, cattle and

goat (1); chicken and goat (1)

Control (1) Chicken, cattle, dog and goat (1)

Non-typhoidal

Salmonella

2 Case (1) Chicken, dog and goat (1)

Control (1) Chicken (1)

Cryptosporidium 2 Case (2) Chicken (2)

Campylobacter jejuni 2 Case* (2) Chicken (2)

Campylobacter coli 1 Case (1) Goat (1)

Rotavirus 1 Case (1) Chicken (1)

*One case child was positive for both diarrheagenic E. coli and C. jejuni

https://doi.org/10.1371/journal.pntd.0005795.t005
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animals were resident. Children who reportedly washed their hands after contact with animals

had significantly lower odds of MSD. Water, sanitation, and hygiene (WASH) interventions,

including hand washing promotion, are shown to significantly reduce the risks of diarrheal ill-

ness in less developed countries [45, 46], but their effectiveness in reducing pathogen exposure

specifically from domestic animals in these settings has not been explored. While the protec-

tive effect of hand washing has been demonstrated in outbreaks of enteric diseases associated

with exposure to domestic animals in public settings [12, 13, 47], in their review Zambrano

et al. [20] could find no studies that focused on WASH as a means of limiting disease transmis-

sion following domestic exposure to food-producing animals. Our study may be the first to

report evidence of a protective effect of hand washing following exposure to household domes-

tic animals in a developing country context. Hand washing after contact with animals may be

a reflection of an overall higher frequency of hand washing in these children, and thus the pro-

tective effect may extend beyond (or be unrelated to) the risk of diarrheal illness after animal

exposure. We recognise that a limitation of our study is reliance on self-reporting of behaviour,

including hand washing.

Children from compounds that reported frequent observation of fresh rodent excreta

outside the house had significantly higher odds of MSD. In a previous study in the area, a

number of rodents were trapped in compounds, including a high proportion of black rats [34].

Rodents, and particularly rats, can be infected with pathogens that cause diarrheal illness in

humans [48], including Salmonella Typhimurium [49, 50], Shiga-toxin producing E. coli [51]

and Cryptosporidium parvum [52, 53]. Fresh rodent feces in areas of the compound may there-

fore be a source of exposure of children to these pathogens. Absence of rodent excreta could

also be a reflection of better sanitation in these compounds, which may be associated with

decreased risk of MSD independent of rodents.

Ownership and husbandry of sheep was found to be associated with MSD, but the nature of

their role is not clear, with increasing numbers of sheep associated with increased odds, and

not confining adult sheep in a pen overnight associated with decreased odds. Distance between

children’s sleeping areas and where sheep are kept overnight may also play a role. Sheep are

not a common livestock species in the study area, with only 18% of compounds owning sheep

(compared with 49% owning cattle and 48% owning goats). Evidence from the literature of a

specific role for sheep as risk factors for diarrheal illness in children is scant [54–57]. Con-

sumption of mutton was found to be a risk factor for gastrointestinal illness in children and

young adults in Isiolo, eastern Kenya [58]. In our study, we found a low prevalence of poten-

tially zoonotic enteric pathogens in sheep feces (0% - 5%), with the exception of Giardia
(21%). Giardia infection in children was not associated with MSD in GEMS [29].

Participation of the child in providing water to chickens was identified as a risk factor for

MSD. In our study, a relatively high proportion of chicken fecal pools were positive for non-

typhoidal Salmonella (11.3%), Campylobacter jejuni (7.8%) and diarrheagenic E. coli (7.6%). In

their meta-analysis of six studies, Zambrano et al. [20] showed that poultry exposure more than

doubled the odds of Campylobacter spp. infections in humans. Limiting exposure to household

poultry, by for example corralling poultry, should therefore reduce the incidence of Campylo-
bacter enteritis in children; however, in a randomized study to test this, Oberhelman et al. [59]

found that rates of Campylobacter-related diarrhea were in fact significantly higher in children

from households in which chickens were corralled, compared to those from households in

which chickens were not confined. They speculated that this was due to the effect that corralling

had on concentrating infected feces in one area, which would increase the risk of exposure to

high doses of Campylobacter in children who entered corrals. Similarly, in our study we specu-

late that provision of water to chickens will be carried out mainly in situations where chickens

are confined rather than free-ranging, increasing exposure of any accompanying children to
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enteric pathogens in the accumulated feces; however, we lack more detailed information on the

nature of the reported exposure to substantiate this supposition. Active ingestion of chicken

feces by infants has been observed in a rural African setting [60], highlighting the risk of zoo-

notic transmission of enteric pathogens.

In general, the prevalence of potentially zoonotic enteric pathogens in chicken feces in our

study was lower than those reported in other studies in comparable settings [9, 24, 59, 61, 62].

Prevalence of zoonotic enteric pathogens in ruminants in our study was also lower when com-

pared with other studies [24, 25, 61–65]. While this may be a reflection of differences in the

diagnostic methods used, it could also be due to the extensive, subsistence nature of animal

husbandry in our study site and the very small herd/flock sizes. We found no evidence of any

association between the presence of particular pathogens in domestic animals and MSD in

children, or of infection of children with the same pathogen species, although we note this was

a pilot study with a small sample size, which may have limited our ability to detect associations.

Enteric pathogens are often shed intermittently in the feces of carrier animals, so it is possible

that carrier animals may not have been identified at the time of the specimen collection. The

sensitivity of the microbiological methods used in children and in animals is low, as shown by

a recent reanalysis of GEMS specimens using quantitative molecular diagnostic methods [66].

Even when the same pathogen species are found in children and in domestic animals in close

contact, further characterization often shows genotypic differences between human and ani-

mal strains [24, 67, 68], although in some instances further subtyping provides support for

zoonotic transmission [69]. In our study, most Cryptosporidium species identified from chick-

ens and calves are pathogenic in humans, but further subtyping of species in child and animal

specimens is needed to better understand the role of zoonotic transmission in cryptosporidio-

sis epidemiology.

We tested a large number of animal-related variables for an association with MSD in chil-

dren. We recognise that with this many variables, significant associations may arise by chance,

although the use of AIC in model selection should mitigate this. Furthermore, we do not infer

a causal relation from the observed associations. We recommend that our results be used to

generate hypotheses of causal links that can be tested in specific studies that address causal

relations. These could include the role of sheep, chickens and rodents as risk factors for child-

hood diarrhea, and the application of WASH interventions to reduce risk. These studies

should include established predictors of diarrhea in infants and young children, including

breastfeeding and HIV status, in their causal models [70]. Future studies might further exam-

ine animal-related factors associated with environmental enteric dysfunction, as a number of

zoonotic enteric pathogens have been found to be associated with this condition [71]. The use

of quantitative molecular diagnostic methods in well-designed case-control and cohort studies

of linked human and animal populations will also be important to understand the role of ani-

mals in domestic environments as reservoirs of human enteric pathogens.
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