612 research outputs found

    The Krull dimension of power series rings over non-SFT rings

    Get PDF
    AbstractLet R be a commutative ring with identity. We show that the Krull dimension of the power series ring R〚X〛 can be uncountably infinite, i.e., there exists an uncountably infinite chain of prime ideals in R〚X〛, even if dimR is finite. In fact, we show that dimR〚X〛 is uncountably infinite if R is a non-SFT ring, which is an improvement of Arnold’s result

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Rationale and protocol for the 7- And 8-year longitudinal assessments of eye health in a cohort of young adults in the Raine Study

    Get PDF
    Introduction Eye diseases and visual impairment more commonly affect elderly adults, thus, the majority of ophthalmic cohort studies have focused on older adults. Cohort studies on the ocular health of younger adults, on the other hand, have been few. The Raine Study is a longitudinal study that has been following a cohort since their birth in 1989-1991. As part of the 20-year follow-up of the Raine Study, participants underwent a comprehensive eye examination. As part of the 27- and 28-year follow-ups, eye assessments are being conducted and the data collected will be compared with those of the 20-year follow-up. This will provide an estimate of population incidence and updated prevalence of ocular conditions such as myopia and keratoconus, as well as longitudinal change in ocular parameters in young Australian adults. Additionally, the data will allow exploration of the environmental, health and genetic factors underlying inter-subject differential long-term ocular changes. Methods and analysis Participants are being contacted via telephone, email and/or social media and invited to participate in the eye examination. At the 27-year follow-up, participants completed a follow-up eye screening, which assessed visual acuity, autorefraction, ocular biometry and ocular sun exposure. Currently, at the 28-year follow-up, a comprehensive eye examination is being conducted which, in addition to all the eye tests performed at the 27-year follow-up visit, includes tonometry, optical coherence tomography, funduscopy and anterior segment topography, among others. Outcome measures include the incidence of refractive error and pterygium, an updated prevalence of these conditions, and the 8-year change in ocular parameters. Ethics and dissemination The Raine Study is registered in the Australian New Zealand Clinical Trials Registry. The Gen2 20-year, 27-year and 28-year follow-ups are approved by the Human Research Ethics Committee of the University of Western Australia. Findings resulting from the study will be published in health or medical journals and presented at conferences. Trial registration number ACTRN12617001599369; Active, not recruiting

    Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes

    Get PDF
    The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable

    The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”

    Get PDF
    For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events

    Performance of gastrointestinal pathologists within a national digital review panel for Barrett's oesophagus in the Netherlands: Results of 80 prospective biopsy reviews

    Get PDF
    Aims: The histopathological diagnosis of low-grade dysplasia (LGD) in Barrett's oesophagus (BO) is associated with poor interobserver agreement and guidelines dictate expert review. To facilitate nationwide expert review in the Netherlands, a web-based digital review panel has been set up, which currently consists of eight 'core' pathologists. The aim of this study was to evaluate if other pathologists from the Dutch BO expert centres qualify for the expert panel by assessing their performance in 80 consecutive LGD reviews submitted to the panel. Methods: Pathologists independently assessed digital slides in two phases. Both phases consisted of 40 cases, with a group discussion after phase I. For all cases, a previous consensus diagnosis made by five core pathologists was available, which was used as reference. The following criteria were used: (1) percentage of 'indefinite for dysplasia' diagnoses, (2) percentage agreement with consensus diagnosis and (3) proportion of cases with a consensus diagnosis of dysplasia underdiagnosed as non-dysplastic. Benchmarks were based on scores of the core pathologists. Results: After phase I, 1/7 pathologists met the benchmark scor

    Generalized Contour Dynamics: A Review

    Get PDF
    Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    • 

    corecore