55 research outputs found
Improved measurement of the K+->pi+nu(nu)over-bar branching ratio
An additional event near the upper kinematic limit for K+-->pi(+)nu(nu) over bar has been observed by experiment E949 at Brookhaven National Laboratory. Combining previously reported and new data, the branching ratio is B(K+-->pi(+)nu(nu) over bar)=(1.47(-0.89)(+1.30))x10(-10) based on three events observed in the pion momentum region 211<P<229 MeV/c. At the measured central value of the branching ratio, the additional event had a signal-to-background ratio of 0.9
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay
published_or_final_versio
Neutrinos
229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
The use of insulin declines as patients live farther from their source of care: results of a survey of adults with type 2 diabetes
BACKGROUND: Although most diabetic patients do not achieve good physiologic control, patients who live closer to their source of primary care tend to have better glycemic control than those who live farther away. We sought to assess the role of travel burden as a barrier to the use of insulin in adults with diabetes METHODS: 781 adults receiving primary care for type 2 diabetes were recruited from the Vermont Diabetes Information System. They completed postal surveys and were interviewed at home. Travel burden was estimated as the shortest possible driving distance from the patient's home to the site of primary care. Medication use, age, sex, race, marital status, education, health insurance, duration of diabetes, and frequency of care were self-reported. Body mass index was measured by a trained field interviewer. Glycemic control was measured by the glycosolated hemoglobin A1C assay. RESULTS: Driving distance was significantly associated with insulin use, controlling for the covariates and potential confounders. The odds ratio for using insulin associated with each kilometer of driving distance was 0.97 (95% confidence interval 0.95, 0.99; P = 0.01). The odds ratio for using insulin for those living within 10 km (compared to those with greater driving distances) was 2.29 (1.35, 3.88; P = 0.02). DISCUSSION: Adults with type 2 diabetes who live farther from their source of primary care are significantly less likely to use insulin. This association is not due to confounding by age, sex, race, education, income, health insurance, body mass index, duration of diabetes, use of oral agents, glycemic control, or frequency of care, and may be responsible for the poorer physiologic control noted among patients with greater travel burdens
Anomalous coupling effects in rare B- and K-meson decays
As a top-factory, the LHC is performing a direct study of top-quark anomalous
FCNC couplings, which are, however, correlated closely with the rare B- and
K-meson decays. In this paper, we study the effects of anomalous (with
) couplings in the rare decays , , , , and . With the up-to-date experimental bounds on the branching
ratios of these channels, constraints on the left-handed anomalous couplings
and are derived, respectively. With these low-energy
constraints taken into account, we find that, for real couplings and
, the indirect upper bounds on are much lower
than that from the D0 collaboration, but are still compatible with the
discovery potential of ATLAS with an integrated luminosity of . With refined measurements to be available at the LHCb, the
future super-B factories, the NA62 at CERN, and the KOTO at J-PARC, closer
correlations between the and the rare B- and K-meson decays are
expected in the near future, which will be helpful for the searches of the
top-quark FCNC decays at the LHC.Comment: 25 pages, 18 figures, 4 tables; More references added, version
published in JHE
- …
