2,377 research outputs found

    Monocyte chemotactic protein-1 (MCP-1) as a predictor of prolonged urinary incontinence after radical prostatectomy

    Get PDF
    Objectives: To investigate monocyte chemotactic protein-1 (MCP-1) as a novel urinary biomarker to predict prolonged post prostatectomy incontinence. Methods: Men submitted urine samples prior to robotic radical prostatectomy. MCP-1 values were derived using an ELISA test. Pad usage at 7, 30, and 60 days were documented by patient post cards mailed when zero pads was reached. The primary outcome was defined as no incontinence pad usage at 30 days at prostatectomy. Results: After exclusions, 76 patients were included in analyses. Continence was reached by 29% (22/76), 56% (42/76), and (75/76) 98% at 7, 30, and 60 days, respectively. The average MCP-1 (p=0.258) was not different between the continent and incontinent groups. Highest quartile of MCP-1 (MCP > 166 pg/mL) and normalized MCP-1 (MCP-1/TV >0.53) noted a significant delay in continence at 30 days (p=0.050 and p=0.003). Only 26% (5/19) in the highest MCP1/TV quartile were continent, whereas 65% (37/57) of men in the 3 lower quartiles reached zero pad continence (p=0.003). In a logistic regression model the highest quartile of MCP1/TV had a significant chance of being incontinent at 30 days (OR 0.22; 95% CI 0.058-0.80; p=0.022). Conclusion: MCP-1/TV is a urinary biomarker that may predict prolonged urinary incontinence after radical prostatectomy

    Understanding Shale Gas: Recent Progress and Remaining Challenges

    Get PDF
    Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recent advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO2 in heterogeneous subsurface rocks such as those typically found in shale formations. The narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations

    Rain-induced turbulence and air-sea gas transfer

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C07009, doi:10.1029/2008JC005008.Results from a rain and gas exchange experiment (Bio2 RainX III) at the Biosphere 2 Center demonstrate that turbulence controls the enhancement of the air-sea gas transfer rate (or velocity) k during rainfall, even though profiles of the turbulent dissipation rate ɛ are strongly influenced by near-surface stratification. The gas transfer rate scales with ɛ inline equation for a range of rain rates with broad drop size distributions. The hydrodynamic measurements elucidate the mechanisms responsible for the rain-enhanced k results using SF6 tracer evasion and active controlled flux technique. High-resolution k and turbulence results highlight the causal relationship between rainfall, turbulence, stratification, and air-sea gas exchange. Profiles of ɛ beneath the air-sea interface during rainfall, measured for the first time during a gas exchange experiment, yielded discrete values as high as 10−2 W kg−1. Stratification modifies and traps the turbulence near the surface, affecting the enhancement of the transfer velocity and also diminishing the vertical mixing of mass transported to the air-water interface. Although the kinetic energy flux is an integral measure of the turbulent input to the system during rain events, ɛ is the most robust response to all the modifications and transformations to the turbulent state that follows. The Craig-Banner turbulence model, modified for rain instead of breaking wave turbulence, successfully predicts the near-surface dissipation profile at the onset of the rain event before stratification plays a dominant role. This result is important for predictive modeling of k as it allows inferring the surface value of ɛ fundamental to gas transfer.This work was funded by a generous grant from the David and Lucile Packard Foundation and the Lamont-Doherty Earth Observatory Climate Center. Additional funding was provided by the National Science Foundation (OCE-05-26677) and the Office of Naval Research Young Investigator Program (N00014-04-1-0621)

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Single cell transcriptional analysis reveals novel innate immune cell types

    Get PDF
    Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR) for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription profiling provides evidence of cellular subclasses in neutrophils and leukocytes that may be independent of traditional classifications based on cell surface markers. The choice of primary data analysis method had a substantial effect on the interpretation of the data. Adjustment for technical effects is critical to prevent misinterpretation of single cell transcript data

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Effects of robotic-assisted laparoscopic prostatectomy on surgical pathology specimens

    Get PDF
    Background Robotic-assisted laparoscopic prostatectomy (RALP) has greatly changed clinical management of prostate cancer. It is important for pathologists and urologists to compare RALP with conventional open radical retropubic prostatectomy (RRP), and evaluate their effects on surgical pathology specimens. Methods We retrospectively reviewed and statistically analyzed 262 consecutive RALP (n = 182) and RRP (n = 80) procedures performed in our institution from 2007 to 2010. From these, 49 RALP and 33 RRP cases were randomly selected for additional microscopic examination to analyze the degree of capsular incision and the amount of residual prostate surface adipose tissue. Results Positive surgical margins were present in 28.6% RALP and 57.5% RRP cases, a statistically significant difference. In patients with stage T2c tumors, which represent 61.2% RALP and 63.8% RRP patients, the positive surgical margin rate was 24.1% in the RALP group and 58.8% in the RRP group (statistically significant difference). For other pathologic stages, the differences in positive margins between RALP and RRP groups were not statistically significant. The incidence of positive surgical margins after RALP was related to higher tumor stage, higher Gleason score, higher tumor volume and lower prostate weight, but was not related to the surgeons performing the procedure. When compared with RRP, RALP also caused less severe prostatic capsular incision and maintained larger amounts of residual surface adipose tissue in prostatectomy specimens. Conclusions In this study RALP showed a statistically significant lower positive surgical margin rate than RRP. Analysis of capsular incision and amount of prostatic surface residual adipose tissue suggested that RALP caused less prostatic capsular damage than RRP

    Measurement of B(t->Wb)/B(t->Wq) at the Collider Detector at Fermilab

    Get PDF
    We present a measurement of the ratio of top-quark branching fractions R= B(t -> Wb)/B(t -> Wq), where q can be a b, s or a d quark, using lepton-plus-jets and dilepton data sets with integrated luminosity of ~162 pb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of t-tbar events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.Comment: 7 pages, 2 figures, published in Physical Review Letters; changes made to be consistent with published versio

    Search for ZZ and ZW Production in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for ZZ and ZW vector boson pair production in ppbar collisions at sqrt(s) = 1.96 TeV using the leptonic decay channels ZZ --> ll nu nu, ZZ --> l l l' l' and ZW --> l l l' nu. In a data sample corresponding to an integrated luminosity of 194 pb-1 collected with the Collider Detector at Fermilab, 3 candidate events are found with an expected background of 1.0 +/- 0.2 events. We set a 95% confidence level upper limit of 15.2 pb on the cross section for ZZ plus ZW production, compared to the standard model prediction of 5.0 +/- 0.4 pb.Comment: 7 pages, 2 figures. This version is accepted for publication by Phys. Rev. D Rapid Communication
    corecore