196 research outputs found

    Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas

    Get PDF
    The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing 'pancreatospheres' in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Air-sea gas exchange in Antarctic waters

    Get PDF

    The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate

    Get PDF
    Surface ocean biogeochemistry and photochemistry regulate ocean–atmosphere fluxes of trace gases critical for Earth’s atmospheric chemistry and climate. The oceanic processes governing these fluxes are often sensitive to the changes in ocean pH (or pCO2) accompanying ocean acidification (OA), with potential for future climate feedbacks. Here, we review current understanding (from observational, experimental and model studies) on the impact of OA on marine sources of key climate-active trace gases, including dimethyl sulfide (DMS), nitrous oxide (N2O), ammonia and halocarbons. We focus on DMS, for which available information is considerably greater than for other trace gases. We highlight OA-sensitive regions such as polar oceans and upwelling systems, and discuss the combined effect of multiple climate stressors (ocean warming and deoxygenation) on trace gas fluxes. To unravel the biological mechanisms responsible for trace gas production, and to detect adaptation, we propose combining process rate measurements of trace gases with longer term experiments using both model organisms in the laboratory and natural planktonic communities in the field. Future ocean observations of trace gases should be routinely accompanied by measurements of two components of the carbonate system to improve our understanding of how in situ carbonate chemistry influences trace gas production. Together, this will lead to improvements in current process model capabilities and more reliable predictions of future global marine trace gas fluxes

    Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids

    Get PDF
    Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation o

    The SOLAS air-sea gas exchange experiment (SAGE) 2004

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through the New Zealand Foundation for Research, Science and Technology (FRST) programs (C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for specific collaborations by the US National Science Foundation from grants OCE-0326814 (Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand International Science and Technology (ISAT) linkages fund provided additional funding (Archer and Ziolkowski), and the many collaborator institutions also provided valuable support

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF
    corecore