98 research outputs found

    Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii

    Get PDF
    International audienceToxoplasma gondii virulence depends on the expression of factors packed into specific organelles such as rhoptry and microneme. Although virulence factor expression is tightly regulated, the molecular mechanisms controlling their regulation remain poorly understood. ApiAP2 are a family of conserved transcription factors (TFs) that play an important role in regulating gene expression in apicomplexan parasites. TgAP2XI-5 is able to bind to transcription-ally active promoters of genes expressed during the S/M phase of the cell cycle, such as virulence genes (rhoptries and micronemes genes). We identified proteins interacting with TgAP2XI-5 including a cell cycle-regulated ApiAP2 TF, TgAP2X-5. Using an inducible knock-down strategy and RNA-seq, we demonstrated that the level of expression of number of virulence factors transcripts is affected by the disruption of TgAP2X-5 expression. While TgAP2X-5 disruption has mild effect on parasite invasion, it leads to the strain avirulence in mice. To better understand the molecular mechanisms at stake, we investigated the binding of TgAP2XI-5 at promoters in the TgAP2X-5 mutant strain in a genome-wide assay. We show that disruption of TgAP2X-5 expression leads to defects in TgAP2XI-5 binding to multiple rhoptry gene promoters. Taken together, these data suggest a cooperative contribution of two ApiAP2 TF in the regulation of virulence genes in T. gondii

    Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex

    Get PDF
    International audienceThe nuclear pore is a key structure in eukaryotes regulating nuclear-cytoplasmic transport as well as a wide range of cellular processes. Here, we report the characterization of the first Toxoplasma gondii nuclear pore protein, named TgNup302, which appears to be the orthologue of the mammalian Nup98-96 protein. We produced a conditional knock-down mutant that expresses TgNup302 under the control of an inducible tetracycline-regulated promoter. Under ATc treatment, a substantial decrease of TgNup302 protein in inducible knock-down (iKD) parasites was observed, causing a delay in parasite proliferation. Moreover, the nuclear protein TgENO2 was trapped in the cytoplasm of ATc-treated mutants, suggesting that TgNup302 is involved in nuclear transport. Fluorescence in situ hybridization revealed that TgNup302 is essential for 18S RNA export from the nucleus to the cytoplasm, while global mRNA export remains unchanged. Using an affinity tag purification combined with mass spectrometry, we identified additional components of the nuclear pore complex, including proteins potentially interacting with chromatin. Furthermore, reverse immunoprecipitation confirmed their interaction with TgNup302, and structured illuminated microscopy confirmed the NPC localization of some of the TgNup302-interacting proteins. Intriguingly, facilitates chromatin transcription complex (FACT) components were identified, suggesting the existence of an NPC-chromatin interaction in T. gondii. Identification of TgNup302-interacting proteins also provides the first glimpse at the NPC structure in Apicomplexa, suggesting a structural conservation of the NPC components between distant eukaryotes

    Quantitative spectral quality assessment technique validated using intraoperative in vivo Raman spectroscopy measurements

    Get PDF
    Significance: Ensuring spectral quality is prerequisite to Raman spectroscopy applied to surgery. This is because the inclusion of poor-quality spectra in the training phase of Raman-based pathology detection models can compromise prediction robustness and generalizability to new data. Currently, there exists no quantitative spectral quality assessment technique that can be used to either reject low-quality data points in existing Raman datasets based on spectral morphology or, perhaps more importantly, to optimize the in vivo data acquisition process to ensure minimal spectral quality standards are met. Aim: To develop a quantitative method evaluating Raman signal quality based on the variance associated with stochastic noise in important tissue bands, including C─C stretch, CH2  /  CH3 deformation, and the amide bands. Approach: A single-point hand-held Raman spectroscopy probe system was used to acquire 315 spectra from 44 brain cancer patients. All measurements were classified as either high or low quality based on visual assessment (qualitative) and using a quantitative quality factor (QF) metric. Receiver-operator-characteristic (ROC) analyses were performed to evaluate the performance of the quantitative metric to assess spectral quality and improve cancer detection accuracy. Results: The method can separate high- and low-quality spectra with a sensitivity of 89% and a specificity of 90% which is shown to increase cancer detection sensitivity and specificity by up to 20% and 12%, respectively. Conclusions: The QF threshold is effective in stratifying spectra in terms of spectral quality and the observed false negatives and false positives can be linked to limitations of qualitative spectral quality assessment

    Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures

    Get PDF
    Surgical excision of the whole prostate through a radical prostatectomy procedure is part of the standard of care for prostate cancer. Positive surgical margins (cancer cells having spread into surrounding nonresected tissue) occur in as many as 1 in 5 cases and strongly correlate with disease recurrence and the requirement of adjuvant treatment. Margin assessment is currently only performed by pathologists hours to days following surgery and the integration of a real-time surgical readout would benefit current prostatectomy procedures. Raman spectroscopy is a promising technology to assess surgical margins: its in vivo use during radical prostatectomy could help insure the extent of resected prostate and cancerous tissue is maximized. We thus present the design and development of a dual excitation Raman spectroscopy system (680- and 785-nm excitations) integrated to the robotic da Vinci surgical platform for in vivo use. Following validation in phantoms, spectroscopic data from 20 whole human prostates immediately following radical prostatectomy are obtained using the system. With this dataset, we are able to distinguish prostate from extra prostatic tissue with an accuracy, sensitivity, and specificity of 91%, 90.5%, and 96%, respectively. Finally, the integrated Raman spectroscopy system is used to collect preliminary spectroscopic data at the surgical margin in vivo in four patients

    Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies

    Get PDF
    Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.Peer reviewe

    Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study

    Get PDF
    Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson’s disease, and Alzheimer’s disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected by clinical teams after clinical examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also in only participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2·40, 95% CI 2·14–2·70; p=1·05 × 10–⁴⁸), SNCA (rs7681440; OR 0·73, 0·66–0·81; p=6·39 × 10–¹⁰), and GBA (rs35749011; OR 2·55, 1·88–3·46; p=1·78 × 10–⁹). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1·51, 1·27–1·79; p=2·21 × 10–⁶); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease

    Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies

    Get PDF
    C9orf72 repeat expansions are a common cause of amyotrophic lateral sclerosis and frontotemporal dementia. To date, no large-scale study of dementia with Lewy bodies (DLB) has been undertaken to assess the role of C9orf72 repeat expansions in the disease. Here, we investigated the prevalence of C9orf72 repeat expansions in a large cohort of DLB cases and identified no pathogenic repeat expansions in neuropathologically or clinically defined cases, showing that C9orf72 repeat expansions are not causally associated with DLB. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Deleterious GRM1 Mutations in Schizophrenia

    Get PDF
    We analysed a phenotypically well-characterised sample of 450 schziophrenia patients and 605 controls for rare non-synonymous single nucleotide polymorphisms (nsSNPs) in the GRM1 gene, their functional effects and family segregation. GRM1 encodes the metabotropic glutamate receptor 1 (mGluR1), whose documented role as a modulator of neuronal signalling and synaptic plasticity makes it a plausible schizophrenia candidate. In a recent study, this gene was shown to harbour a cluster of deleterious nsSNPs within a functionally important domain of the receptor, in patients with schizophrenia and bipolar disorder. Our Sanger sequencing of the GRM1 coding regions detected equal numbers of nsSNPs in cases and controls, however the two groups differed in terms of the potential effects of the variants on receptor function: 6/6 case-specific and only 1/6 control-specific nsSNPs were predicted to be deleterious. Our in-vitro experimental follow-up of the case-specific mutants showed that 4/6 led to significantly reduced inositol phosphate production, indicating impaired function of the major mGluR1signalling pathway; 1/6 had reduced cell membrane expression; inconclusive results were obtained in 1/6. Family segregation analysis indicated that these deleterious nsSNPs were inherited. Interestingly, four of the families were affected by multiple neuropsychiatric conditions, not limited to schizophrenia, and the mutations were detected in relatives with schizophrenia, depression and anxiety, drug and alcohol dependence, and epilepsy. Our findings suggest a possible mGluR1 contribution to diverse psychiatric conditions, supporting the modulatory role of the receptor in such conditions as proposed previously on the basis of in vitro experiments and animal studies

    A comprehensive screening of copy number variability in dementia with Lewy bodies

    Get PDF
    The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk. (C) 2019 Elsevier Inc. All rights reserved.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore