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Abstract

Significance: Ensuring spectral quality is prerequisite to Raman spectroscopy applied to surgery.
This is because the inclusion of poor-quality spectra in the training phase of Raman-based path-
ology detection models can compromise prediction robustness and generalizability to new data.
Currently, there exists no quantitative spectral quality assessment technique that can be used to
either reject low-quality data points in existing Raman datasets based on spectral morphology or,
perhaps more importantly, to optimize the in vivo data acquisition process to ensure minimal
spectral quality standards are met.

Aim: To develop a quantitative method evaluating Raman signal quality based on the variance
associated with stochastic noise in important tissue bands, including C─C stretch, CH2∕CH3

deformation, and the amide bands.

Approach: A single-point hand-held Raman spectroscopy probe system was used to acquire
315 spectra from 44 brain cancer patients. All measurements were classified as either high or
low quality based on visual assessment (qualitative) and using a quantitative quality factor
(QF) metric. Receiver-operator-characteristic (ROC) analyses were performed to evaluate the
performance of the quantitative metric to assess spectral quality and improve cancer detection
accuracy.

Results: The method can separate high- and low-quality spectra with a sensitivity of 89% and
a specificity of 90% which is shown to increase cancer detection sensitivity and specificity by up
to 20% and 12%, respectively.

Conclusions: The QF threshold is effective in stratifying spectra in terms of spectral quality and
the observed false negatives and false positives can be linked to limitations of qualitative spectral
quality assessment.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
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There is growing interest in medicine for systems and methods integrating Raman spectroscopy
into clinical workflows to enhance the molecular informational content provided to clinicians.1

In particular, over the last decade, there has been significant efforts developing Raman micro-
spectroscopy to complement standard histopathology analyses to improve diagnostic accuracy
(e.g., reduce interpathologists variance) and create new avenues to improve disease stratification
by providing patient-specific therapeutic options.2,3 Intraoperative point-probe Raman spectros-
copy systems have also been developed lending rapid tissue characterization and classification to
guide surgical procedures based on statistical models produced using machine learning
techniques.4 For example, instruments have been developed to help reduce instances of positive
margins in breast-conserving surgery,5 to detect normal brain invaded with cancer cells during
glioma surgery,6,7 and to characterize prostate tissue;8 they have been integrated in endoscopic
procedures to characterize suspicious lesion in the gastrointestinal tract.9

The biochemical information conveyed by a Raman measurement consists of a detailed
spectral tissue fingerprint conveying information relating to Raman-active vibrational modes
(e.g., C─C stretch, CH2∕CH3 deformations, and vC═C) associated with native biomolecules.
The relative contribution of those bonds to a spectrum can be reinterpreted as a relative fraction
of lipids (e.g., phospholipids and cholesterol), nucleic acids, proteins (e.g., collagen and por-
phyrins), and amino acids (e.g., thymine and phenylalanine). Beyond molecular sensitivity, the
strengths of Raman spectroscopy include the fact that it does not require the injection of a tracer
and that it can be nondestructive and nonionizing, usually interrogating tissue with excitation
light in the near-infrared10 at low power levels. However, an important limitation of Raman spec-
troscopy is that the fraction of the signal directly attributable to molecular vibrational informa-
tion can be several orders of magnitude smaller when compared to background signals (Fig. 1).
Background contributions are usually mostly attributable to intrinsic tissue fluorescence
although other sources of background associated with instrument response (e.g., fluorescence
or Raman signal generated from silica in optical fibers) or bleed-through at laser excitation can
negatively impact Raman signal detection.

(a) (b)

(c)

Fig. 1 (a) Depiction of the relative proportion of different sources of signal in a human brain meas-
urement made using a Raman spectroscopy system, including dark counts and background (e.g.,
fluorescence from tissue and optical components). Measurements are shown that were averaged
over different number of repeated acquisitions: n ¼ 5, 20, and 50. The 1441 cm−1 band is high-
lighted to represent a band typically used to assess spectral quality. For visualization purposes,
the Raman signal shown is amplified by a factor of 50. (b) Processed Raman spectra acquired
in vivo in brain cancer tissue for different numbers of repeat measurements (1, 10, and 50). (c) QF
as a function of the number of repeat measurements. In both (b) and (c), the solid line and shaded
area represent the average and the standard deviation over 15 spectra acquired at different brain
locations, respectively.
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An outstanding issue in tissue Raman spectroscopy is that there is no universal approach
allowing to quantitatively and automatically establish the spectral quality associated with a
Raman measurement. This introduces ambiguities in signal interpretation with no guarantee that
the vibrational information is captured at sufficiently high levels of inelastic scattering photon
counts for pathology detection. In most experiments reported in the literature, qualitative data
quality assessment is made offline based on visual evaluation of the spectra rather than using
unbiased quantitative criteria. In fact, it is common to simply assess the presence of relevant
tissue Raman bands, including phenylalanine at 1004 cm−1, phospholipids at 1087 cm−1, tryp-
tophan at 1339 cm−1, lipid side chains–amino acids at 1441 cm−1, and collagen–nucleic acids at
1659 cm−1. However, a quantitative method was developed to filter undesirable skin measure-
ments using principal component analysis to detect and remove outliers in a dataset;11 however,
this approach is agnostic to the actual biomolecular tissue content.

In biomedical tissue optics applications of Raman spectroscopy reported in the literature,
qualitative spectral quality is optimized by tuning the imaging parameters (laser power at the
sample, detector exposure time, and number of repeat measurements) all the while ensuring
tissue absorption-related heat generation remains sufficiently low not to cause tissue damage.
This is especially important for instruments intended to be used in a clinical environment where
attaining optimal inelastic scattering photon counts is critical if measurements are to be used to
detect subtle changes associated with pathological tissue alterations.

Finding standardized and quantitative manners to assess spectral quality is a complex problem
not only because of the observed variability in the relative strength of different Raman bonds across
tissue types, but also because biological tissue can be highly heterogeneous in terms of intrinsic
fluorescence, absorption (tissue chromophores, e.g., hemoglobin, and pigments, e.g., melanin),
and elastic scattering (organelles, cell nuclei, and membranes). As an example, consider measure-
ments made at two different tissue locations having the same concentration of Raman-active bio-
molecules, but with different levels of background. Then, using identical imaging parameters with
the same system at both locations would result in detected Raman photon counts with different
stochastic variances from shot noise, potentially resulting in one of the measurements being unable
to capture subtle yet important biological Raman peaks (e.g., phenylalanine). These signal quality
variations could compromise classification model robustness and performance.

We are presenting the development and in-human validation of a technique that can be used
to automatically and unambiguously quantify the shot noise specifically related to the Raman
contribution of a spectroscopic measurement, which is the sum of photons from background
signals and inelastically scattered Raman photons. The method is applied to in vivo human brain
data to demonstrate that the resulting Raman signal-to-noise ratio (SNR) can be quantified and
used as a surrogate for spectral quality either retrospectively on existing datasets or live during
surgical procedures. The new quality metric could be used to establish quantitative thresholds
ensuring spectral quality of intraoperative measurements through live automated adjustment of
imaging parameters. This could be used to ensure interpatients homogeneity of Raman spectral
quality in the scope of clinical studies and trials.

It is well-known that the noise affecting optical measurements made with light sensors [e.g.,
charged-coupled devices (CCD)] includes at least three important contributions: thermal noise,
readout noise, and shot noise (photon noise). For CCD-based detection, thermal noise originates
from thermo-generated charges in the depletion region of the chip and readout noise is associated
with the measurement of these charges by the readout device. Contrary to those electronic
sources of stochastic noise, shot noise is a direct consequence of the particulate nature of light
and is common to any photon-detection device. In Raman spectroscopy of biological tissue,
thermal and readout noise are usually negligible compared to shot noise because of the large
measurement backgrounds.

Shot noise follows a Poisson distribution, but in Raman spectroscopy, it can be approximated
as a Gaussian distribution because the overall “fluorescence + Raman” detected light intensity I
is always large. This is because significant numbers of Raman photons (relative to the back-
ground) can only result if large fluorescence counts are reached. Then, the formula for overall
SNR is I∕

ffiffi
I

p
(intensity over variance), where I can be modeled as a sum over all detected light

contributions, namely background (fluorescence, instrument response, and laser bleed-through),
dark counts, and Raman signal. The SNR associated with a measurement can be expressed as
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the sum of the SNR values associated with each of these individual sources. As a result, the
formula quantifying only the Raman SNR—i.e., the shot noise associated only with the
Raman component of the signal—within a spectral bin is given by

EQ-TARGET;temp:intralink-;e001;116;699Raman SNRj ≈
ffiffiffiffiffiffiffiffiffi
ntIS

p rjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj þ aj

p ; (1)

where j ¼ 1 to N is an index labeling the individual spectral bins and N is the number of bins of
which a spectrum is composed, usually around 1000 for most spectrometers. Other physical
quantities in the formula are the background intensity ai, the Raman contribution ri, the number
of repeat measurements n at each location, the acquisition time t, and the laser power at the
sample IS.

The hypothesis tested here is that a quality factor (QF) metric can be computed based on the
Raman SNR formula and used to quantitatively assess the spectral quality of individual tissue
Raman spectra. This will be achieved using an in vivo brain dataset acquired using a single-point
hand-held Raman spectroscopy probe system published elsewhere.12 The dataset consists of 315
in situ spectra from 44 brain cancer patients. On average, 7 acquisition points were selected for
each patient and n ¼ 5 to 10 co-located spectra acquired at each point. The laser power Is
(at sample) ranged from 10 to 75 mW and the exposure time was either 50 or 75 ms; both laser
power and integration time were recorded to be used in Eq. (2). For each acquisition point,
a co-located biopsy sample was analyzed by an expert neuropathologist and assigned one of
three labels: normal, cancer, or infiltrated tissue (normal tissue with low density of cancer cells).
The ratio of cancer-to-normal samples in the dataset was approximately 1:1.75.

To provide a ground truth in terms of signal quality, all spectra were qualitatively evaluated
based on their quality (i.e., presence and relative intensity of standard inelastic scattering peaks
expected in tissue) by three independent reviewers (F.D., G.S., and E.L.) using the LabelBox
platform (San Francisco, California). Before being presented to each of the reviewers, the spectra
were randomly shuffled and their assigned pathology label hidden. Each spectrum was graded
on a 1 to 3 scale (higher values corresponding to higher quality) and the sum of all reviewer
scores corresponds to the final quality score ðqSÞ.12 Specific criteria were used such as visual
assessment of ubiquitous Raman tissue peaks, including phenylalanine at 1004 cm−1, a nucleic
acid band at 1082 cm−1, the amide III band at 1300 cm−1, the CH2∕CH3 deformation band at
1441 cm−1, and the amide I band at 1659 cm−1.

In another experiment, 15 in vivo brain measurements were made during surgery in one glio-
blastoma patient to evaluate the impact of n (number or repeat measurements) on the Raman
SNR. For this experiment, measurements were made only within an area associated with tumor
tissue with a laser power of 30 mW (at sample), an integration time varying between 90 and
600 ms, and n ¼ 50. The integration time was automatically determined through an automatic
exposure control code automatically adjusting time to ensure at least 50% of the CCD dynamical
range was used for each measurement.

The quantitative spectral QF is defined as

EQ-TARGET;temp:intralink-;e002;116;246QF ¼
Xk

j¼1

Raman SNRj; (2)

where the sum runs over all spectral bins within the Raman bands selected to assess quality
(Table 1); for example, see Fig. 1 where the 1441 cm−1 band is highlighted. To compute the
QF metric, raw spectroscopic data within the in vivo brain datasets were preprocessed to separate
the Raman contributions ri from the background ai within each spectral bin. Data preprocessing
steps detailed elsewhere12 included: (1) dark noise subtraction from a measurement with the laser
turned off, (2) normalization with the instrument intensity-response correction from a measure-
ment made on a fluorescence standard (SRM 2241, NIST),13 (3) background removal using a
rolling ball algorithm,14 and (4) standard normal variate (SNV) normalization.

The QF metric was then computed for all data points acquired in the scope of the two experi-
ments of the two experiments before SNV normalization. For comparison purposes, the QF was
calculated for all four preselected bands in Table 1, but also for the 1441 cm−1 band alone,

Dallaire et al.: Quantitative spectral quality assessment technique validated using intraoperative. . .

Journal of Biomedical Optics 040501-4 April 2020 • Vol. 25(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 06 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



the 1659 cm−1 band alone, and the sum of both. Other bands could also be considered, but here
we focused on only a few of the most prominent brain tissue Raman bands to demonstrate
applicability of the technique.

All spectra were assigned a label associated with the qS metric, either low quality for qS < 7

or high quality for qS ≥ 7. Spectra were also each assigned a computed QF value. The QF thresh-
old ðQFthreshÞ was then varied from QFthresh ¼ 0 up to its highest value within the dataset, each
time assigning spectra with QF > QFthresh as high quality and low quality otherwise. The value
QFthresh was then used as the parameter of a receiver-operator-characteristic (ROC) curve to
evaluate the effectiveness of QF to predict spectral quality—i.e., to assess the correspondence
between the subset of spectra with QF > QFthresh and spectra for which qS ≥ 7. The effect of
signal quality on tissue classification performance was assessed using support vector machine
(SVM) models with feature selection based on a linear SVM with L1 regularization algorithm.15

Model training was done using the Raman spectra associated with normal and cancer tissue
based on a fivefold cross-validation with SVM hyperparameters optimized using a grid search.
It is standard in the field of machine learning to use a cross-validation procedure because it
allows the full dataset to be used during the training phase while ensuring no bias results when
selecting the validation set for each fold. An ROC curve analysis was used to compare the per-
formance of two different models trained on spectra with QF > 0 and QF > QFthresh.

Figure 1(b) shows the Raman spectra for the data acquired in one glioblastoma patient with
n ¼ 50 repeat measurements. Average SNV-normalized spectra and their variance are shown for
n ¼ 1, 10, and 50, qualitatively highlighting the increase in spectral quality with n. This can be
visually assessed based on a decrease of the variance related to shot noise across the spectrum.
Figure 1(c) shows the QF metric (for all bands in Table 1 combined) as a function of n, quan-
titatively demonstrating that the average Raman SNR (over all 15 measurement points) increases
like

ffiffiffi
n

p
as predicted by Eq. (1). The AEC data acquisition algorithm causes the overall photon

count within each spectral bin to be approximately constant across measurements. However, the
photon count associated with the Raman signal itself varies at different interrogation points,
explaining the observed Raman SNR variance in Fig. 1(c).

ROC curves were produced to assess the performance of the QF metric to classify brain
Raman spectra as either low (qS < 7) or high (qS ≥ 7) qualitative spectral qS. The ROC curves
were parameterized by the numerical value of the QF metric and the classification performance
were reported in terms of sensitivity (rate of false negatives) and specificity (rate of false pos-
itives). Figure 2(a) shows the ROC curves for all considered combinations of Raman bands. The
optimal point in the figure (red dot) corresponds to the QF threshold that optimizes both sensi-
tivity and specificity. Using the 1441 and 1659 cm−1 bands with QF > 145 provided optimal
performances with sensitivity and specificity at 89% and 90% respectively. All of the misclas-
sified measurements (approximately 1 out of 10) had a qS score of either 6 for the false positives
or 7 for the false negatives—i.e., they were at the margin between high and low quality. Further,
visual assessment of all misclassified spectra allowed to determine that they easily could have
been classified with a different qS ð�1Þ, highlighting a limitation of the qualitative assessment
method. Figure 2(b) shows changes in classification performance (cancer vs. normal) when
using all normal and cancer spectra ðQF > 0Þ compared to using only those with QF > 145.
The ROC curve parameter value optimizing sensitivity and specificity is shown as a red dot

Table 1 Raman bands considered when computing the QF metric along with associated vibra-
tional modes and families of biomolecules.

Raman band (cm−1) Vibrational bonds Molecular families

1087 C─C stretch Lipids–DNA

1441 CH2∕CH3 deformation Lipids–proteins

1553 vC═C–amide II Proteins

1659 Amide I–vC═C Lipids–proteins–DNA
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in the figure. Accuracy, sensitivity, and specificity of 72%, 61%, and 75% were obtained for
QF > 0 while values of 80%, 81%, and 87% were obtained for QF > 145, respectively. The
cross-validation approach allowed classification model uncertainties to be computed providing
information not only on increased model performances for larger QF values but also demon-
strated increased model stability. The variability in classification sensitivity and specificity was
between 10% and 17% for QF > 0 and ranged from 4% to 9% for QF > 145.

Figure 3 shows the average spectra (for the 44 patients dataset) for measurements associated
with the normal and cancer tissue labels, separated as higher and lower quality using either the
qualitative or the quantitative metrics. This shows that the overall Raman signal variance is low-
ered by selecting spectra with qS ≥ 7 or QF > 145. Importantly, the cancer-to-normal samples
ratio remained of the same order within the high-quality category as in the full unfiltered dataset,
indicating neither of the methods is biased toward a given class when assessing signal quality.

In most classification approaches based on Raman spectroscopy measurements, interclass
differences are small and can be lost in photon noise. Reducing the signal variance due to
the shot noise should lead to the development of more robust and generalizable models.
This is expected because restraining data to only high QF values would provide the classification
algorithms with the opportunity to more efficiently capture biomolecular tissue differences.

(a) (b)

Fig. 2 ROC curves showing (a) the correspondence between the qualitative and quantitative
spectral quality metrics and (b) the classification performance for different QF thresholds.
(a) Each ROC curves were computed for different combinations of Raman bands and are para-
meterized with the quantitative QF-metric. The qualitative threshold for high spectral quality
was qS ≥ 7. The QF value optimizing both sensitivity and specificity is shown as a red dot and
corresponds to QF ¼ 145. (b) ROC curves for normal versus cancer classification using all spectra
from the dataset ðQF > 0Þ and only spectra with QF > 145. The parameter on the curves optimiz-
ing sensitivity and specificity is shown as a red dot.

(a) (b)

Fig. 3 Average spectra for normal and cancer tissue samples classified in terms of spectral quality
using: (a) the qualitative qS and (b) the quantitative QF. The top graphs show all spectra inde-
pendent of spectral quality, the middle graphs are associated with high-quality spectra (qS ≥ 7 or
QF ≥ 145) while the graphs at the bottom correspond to low-quality spectra (qS < 7 or QF < 145).
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Of course, classification performances could decrease if the dataset becomes too small because
of more stringent imposed spectral quality requirements during the data acquisition process.

The new spectral quality quantification method can be a powerful tool for offline data assess-
ment on existing datasets. However, its main strength resides in its potential use for real-time
Raman spectroscopy signal acquisition. For example, an SNR control unit could be added to the
acquisition workflow of point-probe systems used for surgical guidance. A particular implemen-
tation would require three user-defined input parameters: (1) a predetermined threshold value QF
required to capture spectral variations between classes, (2) a fixed laser power value, and (3) the
maximum number of spectra nmax incurring no tissue damage. Then, once the integration time is
set by the automatic exposure control algorithm, data acquisition would be done n times until
either the Raman SNR threshold is reached or until n ¼ nmax. This would allow to optimize
spectral quality within safety limits imposed by the requirement measurements should have
no impact on the tissue beyond transient heating effects.

Disclosures

F. Leblond and K. Petrecca are co-founders and have ownership interest (including patents) in
ODS Medical. F. Dallaire holds a fellowship co-sponsored by Mitacs and ODS Medical.

Acknowledgments

This work was supported by the TransMedTech Institute, the Discovery Grant program from
Natural Sciences and Engineering Research Council of Canada (NSERC), the Collaborative
Health Research Program (CIHR, NSERC), ODS Medical and Mitacs.

References

1. C. Kallaway et al., “Advances in the clinical application of Raman spectroscopy for cancer
diagnostics,” Photodiagn. Photodyn. Ther. 10(3), 207–219 (2013).

2. A. C. S. Talari et al., “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev.
50(1), 46–111 (2015).

3. G. W. Auner et al., “Applications of Raman spectroscopy in cancer diagnosis,” Cancer
Metastasis Rev. 37(4), 691–717 (2018).

4. M. Jermyn et al., “Intraoperative brain cancer detection with Raman spectroscopy in
humans,” Sci. Transl. Med. 7(274), 274ra19 (2015).

5. A. S. Haka et al., “In vivo margin assessment during partial mastectomy breast surgery using
Raman spectroscopy,” Cancer Res. 66(6), 3317–3322 (2006).

6. M. Jermyn et al., “Highly accurate detection of cancer in situ with intraoperative, label-free,
multimodal optical spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).

7. J. Zhang et al., “Accuracy of Raman spectroscopy in differentiating brain tumor from normal
brain tissue,” Oncotarget 8(22), 36824–36831 (2017).

8. K. Aubertin et al., “Mesoscopic characterization of prostate cancer using Raman spectros-
copy: potential for diagnostics and therapeutics,” BJU Int. 122, 326–336 (2018).

9. M. S. Bergholt et al., “In vivo, real-time, transnasal, image-guided Raman endoscopy:
defining spectral properties in the nasopharynx and larynx,” J. Biomed. Opt. 17(7), 079804
(2012).

10. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,”
Appl. Spectrosc. Rev. 42(5), 493–541 (2007).

11. M. G. Ramírez-Elías, J. Alda, and F. J. González, “Noise and artifact characterization
of in vivo Raman spectroscopy skin measurements,” Appl. Spectrosc. 66(6), 650–655
(2012).

12. E. Lemoine et al., “Feature engineering applied to intraoperative in vivo Raman spectros-
copy sheds light on molecular processes in brain cancer: a retrospective study of 65
patients,” Analyst 144, 6517–6532 (2019).

Dallaire et al.: Quantitative spectral quality assessment technique validated using intraoperative. . .

Journal of Biomedical Optics 040501-7 April 2020 • Vol. 25(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 06 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1016/j.pdpdt.2013.01.008
https://doi.org/10.1080/05704928.2014.923902
https://doi.org/10.1007/s10555-018-9770-9
https://doi.org/10.1007/s10555-018-9770-9
https://doi.org/10.1126/scitranslmed.aaa2384
https://doi.org/10.1158/0008-5472.CAN-05-2815
https://doi.org/10.1158/0008-5472.CAN-17-0668
https://doi.org/10.1111/bju.14199
https://doi.org/10.1117/1.JBO.17.7.079804
https://doi.org/10.1080/05704920701551530
https://doi.org/10.1366/11-06495
https://doi.org/10.1039/C9AN01144G


13. S. J. Choquette et al., “Relative intensity correction of Raman spectrometers: NIST SRMS
2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation,” Appl. Spectrosc.
61(2), 117–129 (2007).

14. R. Perez-Pueyo, M. J. Soneira, and S. Ruiz-Moreno, “Morphology-based automated base-
line removal for Raman spectra of artistic pigments,” Appl. Spectrosc. 64(6), 595–600
(2010).

15. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).

Dallaire et al.: Quantitative spectral quality assessment technique validated using intraoperative. . .

Journal of Biomedical Optics 040501-8 April 2020 • Vol. 25(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 06 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1366/000370207779947585
https://doi.org/10.1366/000370210791414281

