624 research outputs found

    Adiposity, its related biologic risk factors, and suicide: a cohort study of 542,088 Taiwanese adults

    Get PDF
    Recent studies in Western nations have shown inverse associations between body mass index (BMI, measured as weight (kg)/height (m)(2)) and suicide. However, it is uncertain whether the association is similar in non-Western settings, and the biologic pathways underlying the association are unclear. The authors investigated these issues in a cohort of 542,088 Taiwanese people 20 years of age or older who participated in a health check-up program (1994-2008); there were 573 suicides over a mean 8.1 years of follow up. There was a J-shaped association between BMI and suicide risk (P for the quadratic term = 0.033) but limited evidence of a linear association (adjusted hazard ratio per 1-standard-deviation increase = 0.95 (95% confidence interval: 0.85, 1.06)); compared with individuals whose BMI was 18.5-22.9, adjusted hazard ratios for those with a BMI /=35 were 1.56 (95% confidence interval: 1.07, 2.28) and 3.62 (95% confidence interval: 1.59, 8.22), respectively. A high waist-to-hip ratio was associated with an increased risk of suicide. There was some evidence for a reverse J-shaped association of systolic blood pressure and high density lipoprotein cholesterol with suicide and an association of higher triglyceride level with increased suicide risk; these associations did not appear to mediate the associations of BMI and waist-to-hip ratio with suicide.postprin

    The impact of HIV infection on tuberculosis transmission in a country with low tuberculosis incidence:A national retrospective study using molecular epidemiology

    Get PDF
    BACKGROUND: HIV is known to increase the likelihood of reactivation of latent tuberculosis to active TB disease; however, its impact on tuberculosis infectiousness and consequent transmission is unclear, particularly in low-incidence settings. METHODS: National surveillance data from England, Wales and Northern Ireland on tuberculosis cases in adults from 2010 to 2014, strain typed using 24-locus mycobacterial-interspersed-repetitive-units-variable-number-tandem-repeats was used retrospectively to identify clusters of tuberculosis cases, subdivided into 'first' and 'subsequent' cases. Firstly, we used zero-inflated Poisson regression models to examine the association between HIV status and the number of subsequent clustered cases (a surrogate for tuberculosis infectiousness) in a strain type cluster. Secondly, we used logistic regression to examine the association between HIV status and the likelihood of being a subsequent case in a cluster (a surrogate for recent acquisition of tuberculosis infection) compared to the first case or a non-clustered case (a surrogate for reactivation of latent infection). RESULTS: We included 18,864 strain-typed cases, 2238 were the first cases of clusters and 8471 were subsequent cases. Seven hundred and fifty-nine (4%) were HIV-positive. Outcome 1: HIV-positive pulmonary tuberculosis cases who were the first in a cluster had fewer subsequent cases associated with them (mean 0.6, multivariable incidence rate ratio [IRR] 0.75 [0.65-0.86]) than those HIV-negative (mean 1.1). Extra-pulmonary tuberculosis (EPTB) cases with HIV were less likely to be the first case in a cluster compared to HIV-negative EPTB cases. EPTB cases who were the first case had a higher mean number of subsequent cases (mean 2.5, IRR (3.62 [3.12-4.19]) than those HIV-negative (mean 0.6). Outcome 2: tuberculosis cases with HIV co-infection were less likely to be a subsequent case in a cluster (odds ratio 0.82 [0.69-0.98]), compared to being the first or a non-clustered case. CONCLUSIONS: Outcome 1: pulmonary tuberculosis-HIV patients were less infectious than those without HIV. EPTB patients with HIV who were the first case in a cluster had a higher number of subsequent cases and thus may be markers of other undetected cases, discoverable by contact investigations. Outcome 2: tuberculosis in HIV-positive individuals was more likely due to reactivation than recent infection, compared to those who were HIV-negative

    Assessing prediction of diabetes in older adults using different adiposity measures: a 7 year prospective study in 6,923 older men and women

    Get PDF
    The aim of this study was to examine whether waist circumference (WC) or WHR improve diabetes prediction beyond body mass index in older men and women, and to define optimal cut-off points. In this prospective study, non-diabetic men (n = 3,519) and women (n = 3,404) aged 60-79 years were followed up for 7 years. There were 169 and 128 incident cases of type 2 diabetes in men and women, respectively. BMI, WC and WHR all showed strong associations with incident type 2 diabetes independent of potential confounders. In men, the adjusted relative risks (top vs lowest quartile) were 4.71 (95% CI 2.45-9.03) for BMI, 3.53 (95% CI 1.92-6.48) for WC and 2.76 (95% CI 1.58-4.82) for WHR. For women, the corresponding relative risks were 4.10 (95% CI 2.16-7.79), 12.18 (95% CI 4.83-30.74) and 5.61 (95% CI 2.84-11.09) for BMI, WC and WHR, respectively. Receiver-operating characteristic curve analysis revealed similar associations for BMI and WC in predicting diabetes in men (AUC = 0.726 and 0.713, respectively); WHR was the weakest predictor (AUC = 0.656). In women, WC was a significantly stronger predictor (AUC = 0.780) than either BMI (AUC = 0.733) or WHR (AUC = 0.728; p < 0.01 for both). Inclusion of both WC and BMI did not improve prediction beyond BMI alone in men or WC alone in women. Optimal sensitivity and specificity for the prediction of type 2 diabetes was observed at a WC of 100 cm in men and 92 cm in women. In older men, BMI and WC yielded similar prediction of risk of type 2 diabetes, whereas WC was clearly a superior predictor in older wome

    Family and Early Life Factors Associated With Changes in Overweight Status Between Ages 5 and 14 Years: Findings From The Mater University Study Of Pregnancy and its Outcomes

    Get PDF
    Objective To describe different patterns of overweight status between ages 5 and 14 y and examine the role of modifiable family and early life characteristics in explaining different patterns of change between these two ages. Design A population-based prospective birth cohort. Subjects A total of 2934 children (52% males) who were participants in the Mater-University study of pregnancy, Brisbane, and who were examined at ages 5 and 14 y. Main outcome measures Four patterns of change in overweight/obesity status between ages 5 and 14 y: (i) normal at both ages; (ii) normal at 5 y and overweight/obese at 14 y; (iii) overweight/obese at 5 y and normal at 14 y; (iv) overweight/obese at both ages. Results Of the 2934 participants, 2018 (68.8%) had a normal body mass index (BMI) at ages 5 and 14 y, 425 (14.5%) changed from a normal BMI at age 5 y to overweight or obese at age 14 y, 175 (6.0%) changed from being overweight or obese at age 5 y to normal weight at age 14 y and 316 (10.8%) were overweight or obese at both ages 5 and 14 y. Girls were more likely to make the transition from overweight or obese at age 5 y to normal at 14 y than their boy counterparts. Children whose parents were overweight or obese were more likely to change from having a normal BMI at age 5 y to being overweight at 14 y (fully adjusted RR: 6.17 (95% CI: 3.97, 9.59)) and were more likely to be overweight at both ages (7.44 (95% CI: 4.60, 12.02)). Birth weight and increase in weight over the first 6 months of life were both positively associated with being overweight at both ages. Other explanatory factors were not associated with the different overweight status transitions. Conclusions Parental overweight status is an important determinant of whether a child is overweight at either stage or changes from being not overweight at 5 y to becoming so at 14 y

    Regional differences in self-reported screening, prevalence and management of cardiovascular risk factors in Switzerland

    Get PDF
    In Switzerland, health policies are decided at the local level, but little is known regarding their impact on the screening and management of cardiovascular risk factors (CVRFs). We thus aimed at assessing geographical levels of CVRFs in Switzerland. Swiss Health Survey for 2007 (N = 17,879). Seven administrative regions were defined: West (Leman), West-Central (Mittelland), Zurich, South (Ticino), North-West, East and Central Switzerland. Obesity, smoking, hypertension, dyslipidemia and diabetes prevalence, treatment and screening within the last 12 months were assessed by interview. After multivariate adjustment for age, gender, educational level, marital status and Swiss citizenship, no significant differences were found between regions regarding prevalence of obesity or current smoking. Similarly, no differences were found regarding hypertension screening and prevalence. Two thirds of subjects who had been told they had high blood pressure were treated, the lowest treatment rates being found in East Switzerland: odds-ratio and [95% confidence interval] 0.65 [0.50-0.85]. Screening for hypercholesterolemia was more frequently reported in French (Leman) and Italian (Ticino) speaking regions. Four out of ten participants who had been told they had high cholesterol levels were treated and the lowest treatment rates were found in German-speaking regions. Screening for diabetes was higher in Ticino (1.24 [1.09 - 1.42]). Six out of ten participants who had been told they had diabetes were treated, the lowest treatment rates were found for German-speaking regions. In Switzerland, cardiovascular risk factor screening and management differ between regions and these differences cannot be accounted for by differences in populations' characteristics. Management of most cardiovascular risk factors could be improved

    Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.UK Biobank Sleep Traits GWAS summary statistics are available at the Sleep Disorder Knowledge Portal (SDKP) website (http://www.sleepdisordergenetics.org). All other data are contained within the article and its supplementary information or available upon request.Excessive daytime sleepiness (EDS) affects 10–20% of the population and is associated with substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). However, individual daytime sleepiness signals vary in their associations with objective short vs long sleep, and with markers of sleep continuity. The 42 sleepiness variants primarily cluster into two predominant composite biological subtypes - sleep propensity and sleep fragmentation. Shared genetic links are also seen with obesity, coronary heart disease, psychiatric diseases, cognitive traits and reproductive ageing.Medical Research Council (MRC

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Notch-induced T cell development requires phosphoinositide-dependent kinase 1

    Get PDF
    Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development

    Identification of novel loci associated with hip shape:a meta-analysis of genome-wide association studies

    Get PDF
    This study was funded by Arthritis Research UK project grant 20244, which also provided salary funding for DB and CVG. LP works in the MRC Integrative Epidemiology Unit, a UK MRC‐funded unit (MC_ UU_ 12013/4 & MC_UU_12013/5). ALSPAC: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. ALSPAC data collection was supported by the Wellcome Trust (grants WT092830M; WT088806; WT102215/2/13/2), UK Medical Research Council (G1001357), and University of Bristol. The UK Medical Research Council and the Wellcome Trust (102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Framingham Heart Study: The Framingham Osteoporosis Study is supported by grants from the National Institute of Arthritis, Musculoskeletal, and Skin Diseases and the National Institute on Aging (R01 AR41398, R01 AR 061162, R01 AR050066, and R01 AR061445). The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource project. The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01‐HC‐25195) and its contract with Affymetrix, Inc., for genotyping services (N02‐HL‐6‐4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA‐II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. DK was also supported by Israel Science Foundation grant #1283/14. TDC and DR thank Dr Claire Reardon and the entire Harvard University Bauer Core facility for assistance with ATAC‐seq next generation sequencing. This work was funded in part by the Harvard University Milton Fund, NSF (BCS‐1518596), and NIH NIAMS (1R01AR070139‐01A1) to TDC. MrOS: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “Replication of candidate gene associations and bone strength phenotype in MrOS” under the grant number R01 AR051124. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “GWAS in MrOS and SOF” under the grant number RC2 AR058973. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. TwinsUK: The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007‐2013). The study also receives support from the National Institute for Health Research (NIHR)‐funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas’ NHS Foundation Trust in partnership with King's College London. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. This study was also supported by the Australian National Health and Medical Research Council (project grants 1048216 and 1127156), the Sir Charles Gairdner Hospital RAC (SGW), and the iVEC/Pawsey Supercomputing Centre (project grants Pawsey0162 and Director2025 [SGW]). The salary of BHM was supported by a Raine Medical Research Foundation Priming Grant. The Umeå Fracture and Osteoporosis Study (UFO) is supported by the Swedish Research Council (K20006‐72X‐20155013), the Swedish Sports Research Council (87/06), the Swedish Society of Medicine, the Kempe‐Foundation (JCK‐1021), and by grants from the Medical Faculty of Umeå Unviersity (ALFVLL:968:22‐2005, ALFVL:‐937‐2006, ALFVLL:223:11‐2007, and ALFVLL:78151‐2009) and from the county council of Västerbotten (Spjutspetsanslag VLL:159:33‐2007). This publication is the work of the authors and does not necessarily reflect the views of any funders. None of the funders had any influence on data collection, analysis, interpretation of the results, or writing of the paper. DB will serve as the guarantor of the paper. Authors’ roles: Study conception and design: DAB, JSG, RMA, LP, DK, and JHT. Data collection: DJ, DPK, ESO, SRC, NEL, BHM, FMKW, JBR, SGW, TDC, BGF, DAL, CO, and UP‐L. Data analysis: DAB, DSE, FKK, JSG, FRS, CVG, RJB, RMA, SGW, EG, TDC, DR, and TB. Data interpretation: JSG, RMA, TDC, DR, DME, LP, DK, and JHT. Drafting manuscript: DAB and JHT. Revising manuscript content: JHT. All authors approved the final version of manuscript. DAB takes responsibility for the integrity of the data analysis.Peer reviewedPublisher PD
    corecore