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ABSTRACT
We aimed to report the first genomewide association study (GWAS) meta-analysis of dual-energy X-ray absorptiometry (DXA)-
derived hip shape, which is thought to be related to the risk of both hip osteoarthritis and hip fracture. Ten hip shape modes (HSMs)
were derived by statistical shapemodeling using SHAPE software, from hip DXA scans in the Avon Longitudinal Study of Parents and
Children (ALSPAC; adult females), TwinsUK (mixed sex), Framingham Osteoporosis Study (FOS; mixed), Osteoporotic Fractures in
Men study (MrOS), and Study of Osteoporotic Fractures (SOF; females) (totalN¼ 15,934). Associations were adjusted for age, sex, and
ancestry. Five genomewide significant (p< 5� 10�9, adjusted for 10 independent outcomes) single-nucleotide polymorphisms
(SNPs) were associated with HSM1, and three SNPs with HSM2. One SNP, in high linkage disequilibrium with rs2158915 associated
with HSM1, was associated with HSM5 at genomewide significance. In a look-up of previous GWASs, three of the identified SNPs
were associated with hip osteoarthritis, one with hip fracture, and five with height. Seven SNPs were within 200 kb of genes involved
in endochondral bone formation, namely SOX9, PTHrP, RUNX1, NKX3-2, FGFR4, DICER1, and HHIP. The SNP adjacent to DICER1 also
showed osteoblast cis-regulatory activity of GSC, in whichmutations have previously been reported to cause hip dysplasia. For three
of the lead SNPs, SNPs in high LD (r2> 0.5) were identified, which intersected with open chromatin sites as detected by ATAC-seq
performed on embryonic mouse proximal femora. In conclusion, we identified eight SNPs independently associated with hip shape,
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most of which were associated with height and/or mapped close to endochondral bone formation genes, consistent with a
contribution of processes involved in limb growth to hip shape and pathological sequelae. These findings raise the possibility
that genetic studies of hip shape might help in understanding potential pathways involved in hip osteoarthritis and hip fracture.
© 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
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Introduction

Alterations in hip shape have important implications for
disease risk. For example, cam-type deformity caused by

extra bone growth around the anterolateral aspect of the
femoral head leading to femoro-acetabular impingement (FAI) is
associated with premature onset of hip osteoarthritis (OA).(1) In
the Rotterdam study, individuals with cam deformity and
acetabular dysplasia had a twofold increased risk of radiographic
hip OA compared with controls.(2) Hip shape has also been
suggested to predict subsequent hip fracture risk.(3)

Statistical shape modeling (SSM) has been used to describe
overall hip shape, using principal component analysis (PCA) to
derive a set of orthogonal hip shape modes (HSMs).(4) This
method has been applied to investigate genetic influences on
hip OA acting through alterations in hip shape, using a
candidate gene approach. For example, two independent
SNPs within FRZB were previously reported to be associated
with radiographically defined hip shape in a nested case-control
study of older women from Study of Osteoporotic Fractures
(SOF) (n¼ 1046),(5) as were SNPs within ASTN2 and GLT8D1 and
close to IFRD1 in 929 subjects with unilateral radiographic hip
OA.(6) HSMs derived from SSMs show evidence of being
heritable (eg, mode 1 heritability estimated as 0.23(7)), justifying
the search for genetic influences.

SSM has recently been applied to DXA scans to explore the
role of hip shape in the incidence and progression of hip
OA, using a similar approach to radiograph-based analyses
described above, with the exception that shape models also
included the acetabular roof.(8,9) In the present study, we
performed the first GWAS meta-analysis to identify novel
genetic factors associated with hip shape, based on measures
derived from hip DXA scans by SSM, after combining scans from
five distinct population-based cohorts to ensure a sufficiently
large sample (n¼ 15,934) for genetic discovery.

Materials and Methods

Participating cohorts

Hip DXA scans were obtained from the Study of Osteoporotic
Fractures in Men (MrOS; first images taken), the Study of
Osteoporotic Fractures (SOF; first images taken), Framingham
Osteoporosis Study (FOS; first images taken), TwinsUK, and Avon
Longitudinal Study of Parents and Children (ALSPAC; mothers’
first images taken). See Supplemental Methods for more details.

Statistical shape modeling

Hip DXA scans were uploaded to SHAPE software (University of
Aberdeen). One hip DXA scan per individual was used, the left
side being selected in preference. SHAPE automatically placed
53 predefined points on the upper femur and adjacent
acetabulum, related to key anatomical positions.(9) Point
placement was checked and manually realigned if required by
a trained operator to ensure accurate positioning on the cortical

outline. Hip shape size and rotation were standardized by
Procrustes analysis. PCA was then performed on the point
coordinates from the combined sample of scans collected across
all five cohorts, producing a set of HSMs that describe linearly
independent variations in hip shape. The first 10 modes,
accounting for 85% of total variance, were used as outcomes
(Supplemental Fig. S1). HSMs are expressed as deviation from
the mean shape in the combined hip shape sample in standard
normal units (mean¼ 0, SD¼ 1). Outliers (mode scores above or
below 4 SDs) were manually checked by two operators, point
placement corrected where necessary, SSM repeated, and HSMs
then passed to participating cohorts for combining with genetic
data.

The distribution of the HSMswithin the cohorts was examined
and confirmed to follow a standard normal distribution, with the
exception of HSM1, which was skewed due to scanner
differences between cohorts (Supplemental Table S1) (GE Lunar
[Madison, WI, USA] scanners were used in ALSPAC and FOS, and
Hologic [Waltham, MA, USA] scanners in MrOs, SOF and TwinsUK
[Supplemental Methods]). Therefore, the genetic effect estimate
(and SE) within each cohort was rescaled by 1/SD before
conducting the meta-analysis to provide a standardized
comparison across themodes. For each genomewide significant
SNP, SHAPE was used to plot the overall effect on hip shape,
using a linear combination of beta estimates for all nominally
significant SNP-HSM associations. Because the influences of
common genetic variants on hip shape were too small to
visualize, beta coefficients weremultiplied 20-fold for illustrative
purposes.

Genomewide association study and meta-analysis

For each individual cohort, a GWASwas performed for the top 10
HSM, using genotypes imputed from Haplotype Reference
Consortium panel version 1 (ALSPAC, FOS, TwinsUK) or 1000
Genomes Project phase 1 version 3 (MrOS, SOF). Analyses were
adjusted for age at scan and population substructure using
ancestry-derived PCs (and sex for FOS and TwinsUK). Sex was not
adjusted for in the all-male MrOS cohort or the all-female cohort
SOF. Additional height-adjusted GWASs for HSM1 and HSM2
were run as sensitivity analyses. GWASwas performed in ALSPAC
using SNPtest, in MrOS and SOF using PLINK, and in TwinsUK
using GEMMA (genomewide efficient mixed model associa-
tion)(10) to control for familial relatedness within a cohort. GWAS
in FOS used linear mixed-effects models to account for the
familial relationships (the R Kinship2 package; https://cran.r-
project.org/web/packages/available_packages_by_name.html).
A fixed effects meta-analysis was conducted for common SNPs
(MAF> 1%) across the five studies, using the R package
EasyQC.(11) Info score < 0.4 and r2_hat < 0.3 were used to
exclude poorly imputed SNPs. The genomic inflation factor (l)
was used to check for p value inflation on QQ plots. Manhattan
plots were generated in the R package EasyStrata(12) and
regional association plots using LocusZoom.(13) Forest plots
were generated using the R package ggplot2. A random effects
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meta-analysis was also run to generate I2 statistics to test for
heterogeneity using the GWAMA package.(14) A Bonferroni-
corrected genomewide significance threshold of p< 5� 10�9

was used to account for testing genomewide SNPs across 10
outcomes (HSMs).

SNP heritability analysis

SNPheritabilities of theHSMswere computedonGWAS summary
statistics by LD score regression, using the LDSC module.(15) LD
score regression was also used to examine genetic correlations
between the HSMs and hip osteoarthritis,(16) anthropometric
traits (height(17) and waist circumference(18)), and femoral neck
bone mineral density (FN BMD).(19)

SNP associations with other traits

GWAS-identified SNPs were examined in relation to OA using
summary statistics available from the arcOGEN hip OA GWAS(16)

(https://www.arcogen.org.uk/), a recent UK Biobank hip OA
GWAS,(20) and a hip fracture GWAS (as yet unpublished; see
Supplemental Methods). In addition, a look-up was performed
on GWASs of anthropometric and bone-related traits collected
in theMRBase database.(21) Approximate Bayesian colocalization
analysis was performed to determine the posterior probability
(PP) that these associations share the same causal SNPwithin the
genomic region. The “coloc.abf” function in the coloc package in
R was used,(9) using the default setting for the priors
(p¼ 1� 10�4 for each trait to be associated separately and
p¼ 1� 10�5 for both traits to be associated jointly).

Functional analyses

To further whittle down GWAS loci to fewer, potentially
causative variants, several computational and wet-lab experi-
mental analyses were performed. First, the function of genes in
the genomic region of the lead SNPs was explored, including
known skeletal functions, as well as whether Mendelian diseases
(curated fromOnlineMendelian Inheritance inMan [OMIM]) that
have been associated with a skeletal abnormality, and/or
whether mouse knockouts have been reported demonstrating
a skeletal phenotype. Second, to identify possible roles of lead
and proxy variants in cis-regulation, GWAS-identified SNPs were
examined in an osteoblast eQTL genomewide data set, based on
95 unrelated donors.(22) For the hip shape-associated SNP(s)
showing evidence of cis-regulatory activity, evidence of a direct
signal between the eQTL and hip shape (rather than through
coincidental sharing due to linkage) was sought by

heterogeneity of association across multiple SNPs in the cis-
eQTL region using HEIDI test statistics.(23) Third, whether lead
and/or proxy SNPs represent sites of transcriptional regulation
was finally evaluated using a combination of bioinformatics
tools including RegulomeDB and with data acquired from an
experimental approach, the Assay for Transposase-Accessible
Chromatin followed by sequencing (ATAC-seq)(24) applied to
mouse proximal femur. See Supplemental Methods for more
details.

Results

Hip shape GWAS

Hip shape measures were available in 19,379 individuals across
the five participating cohorts (Supplemental Table S2), in whom
genotype data were available in 15,934. A total of 7,191,926
SNPs across the five cohorts passed quality-control filters.
Inspection of the QQ plots, both within the GWASs conducted
on individual cohorts and for the overall meta-analysis, showed
no inflation of p values (genomic inflation factors for all HSM
GWASs� 1.07). Four of the 10 HSMs were estimated to have a
small SNPwise heritable component by LD score regression
(HSM1: h2¼ 0.072 [95% CI 0.0067, 0.14]; HSM2: 0.12 [0.041,0.19];
HSM5: 0.075 [0.012, 0.14]; HSM8: 0.12 [0.040, 0.16]). LD score
regression demonstrated a moderate genetic correlation
between HSM2 and height (rg¼ 0.16 [0.031, 0.29], p¼ 0.015)
and body mass index (BMI)-adjusted waist circumference (an
independent predictor of mortality(25)) (rg¼ 0.31 [0.14, 0.48],
p¼ 0.0002).

Manhattan plots indicated genomewide significant associa-
tions for HSM1, HSM2, and HSM5 (Supplemental Fig. S3). Nine
SNPs were associated with hip shape in the meta-analysis at
Bonferroni-corrected genomewide significance (p< 5� 10�9),
five for HSM1, three for HSM2, and one for HSM5 (Table 1).
Genetic associations showed little evidence of heterogeneity
between cohorts as reflected by low I2 estimates (Fig. 1). SNPs
associated with one HSM at genomewide significance were also
associated with other HSMs at nominal significance threshold
(p< 0.05) (Fig. 2). On illustrating the overall effect of each
genomewide significant SNP on hip shape, based on a 20-fold
magnification, the minor allele was associated with the
following shape differences: altered aspect ratio (ie, width
relative to height) of the upper femur (wider: rs1243579,
rs10473612, rs59341143, and rs6537291; narrower: rs2158915
and rs73197346); narrower and more angulated femoral neck
(rs1966265); smaller femoral head (rs1885245) (Fig. 3).

Table 1. Genetic Associations Detected in the Meta-Analysis (p< 5� 10�9)

HSM SNP Gene/locus EA EAF Beta SE p

1 rs2158915 17q24.3 G 0.35 –0.13 0.012 8.47� 10�27

1 rs1243579 14q32.13 G 0.15 0.12 0.015 2.85� 10�14

1 rs10743612 12p11.22 A 0.24 0.093 0.013 2.91� 10�12

1 rs73197346 21q22.12 C 0.14 –0.11 0.017 2.52� 10�10

1 rs59341143 4p15.33 C 0.15 0.098 0.016 6.53� 10�10

2 rs1966265 FGFR4 T 0.38 0.13 0.014 3.73� 10�20

2 rs6537291 4q31.21 A 0.38 –0.073 0.012 1.01� 10�9

2 rs1885245 ASTN2 G 0.40 0.071 0.012 4.95� 10�9

5 rs2160442 17q24.3 A 0.35 –0.092 0.012 5.18� 10�14

Nine single-nucleotide polymorphisms (SNPs) exceeding cut-off for genomewide significance for hip shape modes (HSMs), describing the SNP
identifier, gene (locus where intergenic), effect (ie, minor) allele (EA), effect allele frequency (EAF), effect estimate (beta), and p value (p).
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HSM1 and HSM5

The strongest association with HSM1 was for rs2158915, an
intergenic SNP at the 17q24.3 locus upstream of SOX9, with the
minor allele inversely related to HSM1 (p¼ 8.47� 10�27;
Supplemental Fig. S4), indicating a narrower aspect ratio of
the upper femur (Supplemental Fig. S1). The same locus was
associated with HSM5 in this study, with which rs2160442 (in
perfect linkage with rs2158915) showed the strongest associa-
tion (p¼ 5.18� 10�14). HSM1 andHSM5 showed similar patterns
of associations across all the SNPs within this region (Supple-
mental Fig. S4), co-localization analysis strongly favoring the
hypothesis that these modes share a common genetic signal
(posterior probability [PP] of shared causal variant¼ 98.4%).
Four additional SNPs were associated with HSM1 at a genome-
wide significance level: rs1243579, an intergenic SNP between
GSC and DICER1 (p¼ 2.85� 10�14; 14q32.13; Supplemental
Fig. S5); rs10743612, an intergenic SNP between KLHL42 and
PTHLH (p¼ 2.91� 10�12; 12p11.22; Supplemental Fig. S6);
rs73197346, an intergenic SNP between RUNX1 and MIR802
(p¼ 2.52� 10�10; 21q22.12; Supplemental Fig. S7); rs59341143,
an intergenic SNP between RAB28 and NKX3-2 (p¼ 6.53� 10�10;
4p15.33; Supplemental Fig. S8). Two suggestive associations
were also detected for HSM1: rs6458443, an intronic SNP in
RUNX2 (p¼ 6.69� 10�9), and rs6564537, an intronic SNP in
WWOX (p¼ 1.08� 10�8) (Supplemental Table S3).

HSM2

The minor allele of rs1966265, a missense SNP of FGFR4, was
positively associated with HSM2, indicating a narrower femoral
neck (Supplemental Fig. S1) (p¼ 3.73� 10�20; Supplemental
Fig. S9). PolyPhen2 revealed that rs1966265 is unlikely to affect
protein function, implying that rs1966265may not be the causal

SNP at this locus. For example, rs12519145 in high LD with
rs1966265 showed strong evidence of enhancer activity on
RegulomeDB and Haploreg annotation and would be a stronger
functional candidate (Supplemental Table S5). Two additional
SNPs were associated with HSM2 at a genomewide significance
level: rs6537291, an intergenic SNP upstream to HHIP (p¼ 1.01
� 10�9; 4q31.21; Supplemental Fig. S10); rs1885245, an intronic
SNP of ASTN2 (p¼ 4.95� 10�9; Supplemental Fig. S11). In
addition, rs17725170, an intergenic SNP between IRX1 and
ADAMTS16, showed a suggestive association with HSM2
(p¼ 5.69� 10�9; 5p15.33; Supplemental Table S3).

Variants shared with other traits

Height

The minor allele of the FGFR4 SNP was related to greater stature
(p¼ 3.8� 10�16) (Table 2); co-localization analysis strongly
favored the hypothesis that HSM2 and height have separate
causal variants at this locus (PP¼ 98.3% and 1.7% for separate
and shared signals, respectively). The 17q24.3 minor allele was
associated with greater stature (p¼ 7� 10�6), co-localization
analysis favoring distinct causal variants for HSM1 and height
(PP¼ 76.5% and 23.2% for separate and shared signals
respectively). The 4q31.21 minor allele was associated with
smaller stature (p¼ 1.9� 10�6), co-localization analysis strongly
favoring different causal variants for HSM2 and height (PP
¼ 99.9%). The 12p11.22 minor allele was weakly associated with
smaller stature (p¼ 0.01 for proxy SNP), co-localization analysis
strongly favoring different causal variants of HSM1 and height
(PP¼ 97.8%). The minor allele of the ASTN2 SNP was associated
with greater stature (p¼ 1.4� 10�11), co-localization analysis
favoring sharing of causal variants for HSM2 and height
(PP¼ 93.9%).

Fig. 1. Forest plot showing association between lead SNPs shown in Table 1 and HSM1 or HSM2, by cohort. Subsequent random effects meta-analysis
showed little evidence of heterogeneity as reflected by low I2 (rs215895¼ 0.06, rs1243579¼ 0.15, rs10473612¼ 0, rs73197346¼ 0.06, rs59341143
¼ 0.13, rs1966265¼ 0, rs1542725¼ 0.08, rs1885245¼ 0).

4 BAIRD ET AL. Journal of Bone and Mineral Research



Hip OA

Minor alleles of proxy SNPs for the 12p11.22 and ASTN2 SNPs
were associated with greater risk of hip OA in arcOGEN(16)

(p¼ 9.6� 10�5 and p¼ 0.0025, respectively) (Table 2). In
addition, the 21q22.12 minor allele was associated with a

reduced risk of hip OA in a recent GWAS based on UK Biobank
(p¼ 0.006).(20) Co-localization analysis strongly favored a shared
causal variant for HSM1 and hip OA at the 12p11.22 locus
(PP¼ 99.6%) but not the 21q22.12 locus (PP¼ 32.8%). A shared
causal variant between HSM2 and hip OA was also the favored
hypothesis at the ASTN2 locus (PP¼ 57.4%). In addition,

Fig. 2. Association between lead SNPs shown in Table 1 and each HSM. Results show effect size (SD) with 95% confidence interval.

Fig. 3. Effect of SNPs shown in Table 1 on hip shape. The overall effect of each SNP shown in Table 1 on hip shape was subsequently modeled for the
minor (ie, effect) allele, by entering the beta value for each association of that SNPwith HSMs at p< 0.05, into SHAPE (see Fig. 2; beta estimatesmultiplied
by 20 for illustrative purposes).
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rs13148031 and rs4837613, previously suggested to be
associated with increased and decreased joint space width,
respectively, are in high LD (r2> 0.8) with minor alleles of
4q31.21 and ASTN2 reported here.(26)

Hip fracture

In an as yet unpublished GWAS (Supplemental Methods), the
17q24.3 and ASTN2 minor alleles showed positive associations
with hip fracture risk (p¼ 0.003 and p¼ 0.02, respectively). Co-
localization analysis favored a shared causal signal for hip shape
and hip fracture at 17q24.3 (PP¼ 62.5% with HSM1) but not the
ASTN2 locus (PP¼ 23.6% with HSM2).

Other traits

The 17q24.3 minor allele was inversely related to femoral neck
(FN) bone mineral density (BMD) (p¼ 0.002), co-localization
showing little evidence for a shared causal variant for HSM1 and
FN BMD at this locus (PP¼ 13.7%). The 14q32.13, 12p11.22, and
21q22.12 SNPs were also associated with FN BMD (p¼ 0.013,
p¼ 8.77� 10�7 and p¼ 0.029, respectively). The 17q24.3 and
FGFR4 minor alleles were associated with smaller (p¼ 0.0023)
and larger (p¼ 3.9� 10�6) waist circumference, respectively.

Sensitivity analyses

Genomewide significant signals were unchanged in HSM1 and
HSM2 GWAS meta-analyses including height adjustment
(Supplemental Table S4).

Functional evaluation

Gene function

Consistent with the above associations between loci that we
identified and height, FGFR4 is known to be involved in
endochondral bone formation, as are SOX9, PTHLH, HHIP, NKX3-
2, DICER1, and RUNX1 within 200 kbp of 17q24.3, 12p11.22,
4q31.21. 4p15.33, 14q32.13, and 21q22.12, respectively (Table
3). These genes are also associated with Mendelian disorders
causing skeletal abnormalities and/or skeletal defects in murine
knockouts (Table 3).

Osteoblast eQTL look-up

The 14q32.13 SNP showed evidence of cis-regulatory activity in a
human osteoblast eQTL database (GSC [p¼ 0.0012], SERPINA10
[p¼ 0.0042], ASB2 [p¼ 0.017], TCL6 [p¼ 0.041]), of which
mutations in GSC (Goosecoid Homeobox) have previously
been reported to cause hip dysplasia.(27) pHEIDI> 0.05 confirmed
that a single causal variant within the 14q32.13 LD block is likely
to affect both osteoblast GSC expression and HSM1. The
12p11.22 SNP also showed evidence of cis-regulatory activity in
human osteoblasts, though none of the associated genes are of
known functional relevance (REP15 [p¼ 0.0016], FGFR1OP2
[p¼ 0.012], PPFIBP1 [p¼ 0.016]).

RegulomeDBwas used to screen SNPs in LDwith lead SNPs for
predicted functional consequences. At 14q32.13, rs12436596, in
perfect LD with rs1243579 and with equivalent eQTL associa-
tions, showed strong evidence of functionality in RegulomeDB
and also Haploreg and CADD, as well as evolutionary
conservation in GERPþþ (Supplemental Table S5). SNPs in LD
with the majority of other lead SNPs were also identified withTa
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predicted functional consequences by RegulomeDB and
haploreg.
ATAC-seq was employed to examine intersections between

SNPs in LD with lead variants and sites of open chromatin,
depicting putative regulatory sequences, in DNA derived from
mouse embryonic proximal femora. Intersectionswere observed
for three SNPs: rs28718249 on chromosome 4, r2¼ 0.51 with the
lead variant (rs59341143), at an ATAC-seq peak immediately
adjacent to the RAB28 promoter; rs6871994 on chromosome 5,
r2¼ 0.98with the lead variant (rs17725170), at an ATAC-seq peak
within a regulatory gene desert; rs4836757, located within an
ASTN2 intron 9, r2¼ 0.52 with the lead variant (rs1885245)
(Supplemental Fig. S12).
To look for enrichment of open chromatin signals within lead

variant locus, a randomized set of matched loci was generated
and intersected with the ATAC-seq data from proximal femur.
This indicated a significant (p< 0.05) overlap of our lead variant
locus with putative regulatory regions, an enrichment not
observed with an ATAC-seq data set from brain, nor active
chromatin mark (H3K27ac) data from human bone marrow–
derived cells and developing limb buds. Additionally, enrich-
ment testing was performed for lead variants associated with
individual hip-shape measures—although no sets showed

enrichment using a Bonferroni-corrected genomewide signifi-
cance threshold of 10�9, HSM1 had a significant overlap with
proximal femur ATAC-seq peaks (p< 0.05) when using a lower-
stringency threshold of 10�7.

Discussion

This GWAS of hip shape identified nine SNPs, in eight loci, to be
associated with hip shape by GWASmeta-analysis at Bonferroni-
corrected genomewide significance (p< 5� 10�9). Consistent
signals were observed across the five cohorts despite their
differences in age, sex, and type of DXA scanner used. Genetic
associations were identified for three of the 10 modes examined
(ie, HSM1, HSM2, and HSM5). It may be that the remaining HSMs,
which together explain approximately 50% of total variance in
hip shape, are less heritable, consistent with our finding that,
apart from HSM1, HSM2, and HSM5, only HSM8 showed an
SNPwise heritable component by LD score regression.

Although this represents the first reported GWAS for hip
shape, previous candidate gene studies(7,8) have examined
associations between OA susceptibility loci and hip shape,
following application of SSM to radiographs (Supplemental

Table 3. Function of Genes Linked to the Single-Nucleotide Polymorphisms (SNPs) Associated With Hip Shape

Locus
Osteoblast/chondrocyte

function
Mendelian disorder causing

skeletal abnormalities
Skeletal defect in
murine knockout

SOX9 (17q24.3,
rs2158915:
upstream)

Transcription factor primarily involved in
chondrogenesis,(42) SOX9 activity can be
increased through being targeted by
PTHLH(33)

Campomelic dysplasia,(43)

Pierre Robin sequence,(44)

Cooks syndrome(45)

Chondrodysplasia and
abnormal joint formation(46)

GSC (14q32.13,
rs1243579:
upstream)

Goosecoid Homeobox, Transcription factor
involved in early development(27)

Short stature, auditory canal
atresia, mandibular
hypoplasia, and skeletal
abnormalities(27)

Severe craniofacial
abnormalities(47)

DICER1
(14q32.13,
rs1243579:
downstream)

Ribonucleases III, which cleaves mRNA into
microRNA, involved in regulating
chondrocyte proliferation(37)

None identified Inhibition of chondrocyte
proliferation resulting in
skeletal growth
abnormalities(37)

PTHLH
(12p11.22,
rs10743612:
downstream)

Parathyroid hormone-like hormone, regulates
endochondral bone development,(34)inhibits
chondrocyte differentiation(34)

Brachydactyly(48) Dyschondroplasia(49)

RUNX1
(21q22.12,
rs73197346:
upstream)

Interacts with RUNX2 to regulate endochondral
bone formation(38)

None identified Abnormal chondrogenesis of
the sternum and skull(50)

NKX3-2
(4p15.33,
rs59341143:
downstream)

NK3 Homeobox 2, promotes chondrogenesis
by inhibiting factors that interact with bone
morphogenetic proteins (BMPs)(36)

Spondylo-megaepiphyseal-
metaphyseal dysplasia(51)

Vertebral defects(52)

FGFR4 FGR4 regulates chondrocyte autophagy(32) None identified Impaired long bone
HHIP (4q31.21,
rs6537291:
downstream)

Ihh regulates chondrocyte differentiation and is
critical in endochondral bone formation(35)

Brachydactyly(53) Shortened skeleton
(overexpression in
chondrocytes)(54)

ASTN2 None identified None identified No mouse knockouts
described

Table summarizes the role of genes related to SNPs identified in Table 1. rs1966265 and rs1885245 reside within the gene of interest; the other SNPs are
intergenic. For the latter, the nearest protein coding gene(s) was selected as gene(s) of interest, and role in osteoblast and/or chondrocyte function and
skeletal expression summarized, along with whether the gene is known to cause a Mendelian disease (curated from OMIM) associated with a skeletal
abnormality, or a skeletal phenotype when knocked out in mice.
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Table S6). rs4836732, reported to be associated with hip shape
by Lindner and colleagues,(6) is in LD (r2¼ 0.49) with rs1885245
ASTN2 SNP we found to be associated with HSM2, both studies
observing relationships with femoral head size. Six other SNPs
identified across these two SSM studies showed little evidence
of association with hip shape in the present study. In a more
recent candidate gene study, we observed a similar relationship
between rs10492367 and HSM1 in ALSPAC mothers to that
found here for rs10743612/12p11.22, with which it is in high LD
(r2¼ 0.78; Supplemental Fig. S6).(26) Therefore, using the
hypothesis-free GWAS approach, the present study has
advanced understanding of the genetic influence on hip shape
through identification of six new associated loci.

The shape effects may have pathological sequelae, as
suggested by evidence that associations between the
12p11.22 and ASTN2 locus SNPs, and HSM1 and HSM2,
respectively, co-localized with signals previously reported in
association with hip OA risk.(16) This implied relationship
between hip shape and hip OA is in-keeping with reported
associations between hip DXA-derived hip shape, obtained
using the same SSM method as used here, and hip OA.(8,9) For
example, a wider upper femur as reflected by HSM1, associated
with 12p11.22 and 21q22.12 loci related to hip OA, might alter
biomechanical forces of the hip and hence risk of hip OA.
Femoral head size and shape, related to HSM2 (Supplemental
Fig. S1), might likewise affect risk of hip OA by influencing hip
biomechanics. However, individual HSMs are associated with
variation in multiple aspects of hip shape, and precisely which
aspect is responsible for pathological sequelae such as hip OA is
currently unknown.

The genetic influences on hip shape that we identified may
also influence fracture risk, given evidence of co-localization of
genetic signals for HSM1 and hip fracture for the 17q24.3 locus.
17q24.3, which is upstream of SOX9, is also associated with
known risk factor for hip fracture, FN BMD.(28) However, this
appears to represent a distinct genetic signal to that associated
with HSM1. Several other geometric parameters independent of
BMD have previously been found to predict risk of hip fracture,
including hip axis length, neck shaft angle, and cross-sectional
moment of inertia.(29,30) However, SNPs at the 17q24.3 locus
showed little relationship with geometric parameters in a hip
structural analysis (HSA) GWAS performed on an overlapping set
of DXA images,(31) suggesting that genetic influence on hip
fracture acting via hip shape are not solely explained by
relationships with known geometric variables.

Because BMD, shape, and geometry are all derived from hip
DXA scans, some shared genetic dependency is expected.
Consistent with this, four hip shape-associated loci were also
associated with femoral neck BMD, based on a look-up of a
previously published GWAS. In addition, there was some overlap
with the above HSA GWAS after height adjustment, particularly
for HSM2-associated loci. For example, rs17725170 was in high
LD (r2> 0.8) with a SNP associated with femoral neck length at
genomewide significance, and rs1966265 in weak LD (r2> 0.3)
with a SNP associated with narrow neck width at genomewide
significance (David Karasik and colleagues, unpublished obser-
vations). Further analyses are warranted to explore shared
genetic heritability between these distinct hip DXA-derived
traits.

Further work is necessary to determine or confirm the exact
genetic variants implicated by these GWAS results. Some
candidates look promising; for example, the HSM1 GWAS signal
at 14q32.13 associated with osteoblast expression of GSC, a

transcription factor involved in early skeletal development. Loss-
of-function mutations in this same gene have previously been
shown to be associated with bilateral femoral head dysplasia.(27)

SNPs at 17q24.3, 12p11.22, FGFR4, 4q31.21, and ASTN2 were
associated with height as well as hip shape, co-localization
analysis demonstrating sharing of the same causal signal for hip
shape and height in the case of the ASTN2 locus. In terms of the
basis for these associations between identified hip shape loci
and height, rs1966265 is a non-synonymous variant in FGFR4,
which is involved in endochondral bone formation.(32) Further-
more, the 17q24.3, 12p11.22, 4q31.21, 4p15.33, 14q32.13, and
21q22.12 loci are all in close proximity to known regulators of
endochondral bone formation, namely SOX9,(33) PTHLH,(34)

HHIP,(35) NKX3-2,(36) DICER1,(37) and RUNX1,(38) respectively. A
link between limb growth and hip shape is consistent with
previous findings that canine hip dysplasia is more common in
larger breeds that grow more rapidly.(39) Although there is
currently little evidence to support a similar relationship
between height and hip development in humans, this might
explain the relationship between height and hip OA risk
reported in epidemiological studies.(40,41)

Several proxy SNPs for the lead variants were identified with
potential impacts on function. For example, we identified a
proxy SNP at 14q32.13, which was strongly related to GSC
expression in osteoblasts, predicted by haploloreg to act as an
enhancer, and showed evidence of evolutionary conservation.
ATAC-seq also suggested an overall enrichment of our lead
variant loci for interections with putative regulatory regions.

Strengths and weaknesses

This study represents the first hip shape GWAS, leading to the
identification of several novel loci for this phenotype, whichmay
in turn reveal novel pathogenic pathways for hip fracture and
OA. Because our GWAS was limited to the first 10 HSMs, which
explain approximately 85% of total variance in hip shape, our
analyses effectively excluded 15% of variance in hip shape. In
terms of other weaknesses, as in many meta-analyses, there
were some inconsistencies in data collection between cohorts.
For example, the aspect ratio of scans from the Lunar Prodigy
used in ALSPAC differed from that of other scanners; however,
because GWAS was performed at the level of individual cohorts,
this limitation is unlikely to have affected our results as the
heterogeneity was low (I2 ranged from 0 to 0.15). A further
limitation is the reliance on hip DXA scans for GWAS studies of
hip shape in large population-based cohorts. Whereas newer
generations of DXA scanners have relatively high levels of
resolution, this was not the case for older devices used to acquire
hip DXA scans from participating cohorts, in which resolution is
relatively poor, leading to difficulty in accurately defining
characteristics such as osteophytes. Nevertheless, we replicated
at least one genetic association with hip shape previously
identified from radiographic studies. In addition, given the
sample size, we elected to focus on common SNPs (MAF� 1%),
which may have overlooked important genetic influence from
lower-frequency SNPs exerting relatively strong effects.(19)

Lack of a separate replication cohort represents a further
limitation to the present study, particularly in the case of those
associations that were close to the p< 5� 10�9 genomewide
significance. Because PCA methods that we employed generate
shape phenotypes specific to the data set, this potentially limits
the opportunity for independent replication in other cohorts.
That said, HSM1, reflecting upper femur height-to-width ratio,
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for which we observed the largest number of genetic
associations, is consistently the first mode generated by SSM
inDXA-based hip images, irrespective ofwhich study population
this is applied to. Moreover, parameters for the shape model
used in this study are available on request, making it feasible to
generate identical shape parameters in other cohorts, enabling
independent replication of our findings.

Conclusions

A GWAS meta-analysis identified eight loci consistently
associated with DXA-derived hip shape. Most loci were also
associated with height and close to genes involved in
endochondral bone formation, pointing to a relationship
between genetic influence on hip shape and limb growth. An
additional locus associatedwith HSM1, immediately upstreamof
the GSC gene implicated in hip dysplasia, had evidence of cis-
regulatory activity in osteoblasts. Further studies are justified to
identify additional hip shape loci, by analyzing rare variants and
regional hip models, and to determine the mechanisms by
which genetic variation in hip shape produces pathological
consequences such as hip OA and hip fracture.
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