260 research outputs found
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
A measurement of the W boson mass using large rapidity electrons
We present a measurement of the W boson mass using data collected by the D0
experiment at the Fermilab Tevatron during 1994--1995. We identify W bosons by
their decays to e-nu final states where the electron is detected in a forward
calorimeter. We extract the W boson mass, Mw, by fitting the transverse mass
and transverse electron and neutrino momentum spectra from a sample of 11,089 W
-> e nu decay candidates. We use a sample of 1,687 dielectron events, mostly
due to Z -> ee decays, to constrain our model of the detector response. Using
the forward calorimeter data, we measure Mw = 80.691 +- 0.227 GeV. Combining
the forward calorimeter measurements with our previously published central
calorimeter results, we obtain Mw = 80.482 +- 0.091 GeV
Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV
We present the first measurement of the inclusive three-jet differential
cross section as a function of the invariant mass of the three jets with the
largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96
TeV. The measurement is made in different rapidity regions and for different
jet transverse momentum requirements and is based on a data set corresponding
to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at
the Fermilab Tevatron Collider. The results are used to test the three-jet
matrix elements in perturbative QCD calculations at next-to-leading order in
the strong coupling constant. The data allow discrimination between
parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected
chi2 values for NNPD
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
Finite-time destruction of entanglement and non-locality by environmental influences
Entanglement and non-locality are non-classical global characteristics of
quantum states important to the foundations of quantum mechanics. Recent
investigations have shown that environmental noise, even when it is entirely
local in influence, can destroy both of these properties in finite time despite
giving rise to full quantum state decoherence only in the infinite time limit.
These investigations, which have been carried out in a range of theoretical and
experimental situations, are reviewed here.Comment: 27 pages, 6 figures, review article to appear in Foundations of
Physic
Measurement of angular correlations of jets at sqrt(s)=1.96 TeV and determination of the strong coupling at high momentum transfers
We present a measurement of the average value of a new observable at hadron
colliders that is sensitive to QCD dynamics and to the strong coupling
constant, while being only weakly sensitive to parton distribution functions.
The observable measures the angular correlations of jets and is defined as the
number of neighboring jets above a given transverse momentum threshold which
accompany a given jet within a given distance Delta-R in the plane of rapidity
and azimuthal angle. The ensemble average over all jets in an inclusive jet
sample is measured and the results are presented as a function of transverse
momentum of the inclusive jets, in different regions of Delta-R and for
different transverse momentum requirements for the neighboring jets. The
measurement is based on a data set corresponding to an integrated luminosity of
0.7 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider in
pp-bar collisions at sqrt(s)=1.96 The results are well described by a
perturbative QCD calculation in next-to-leading order in the strong coupling
constant, corrected for non-perturbative effects. From these results, we
extract the strong coupling and test the QCD predictions for its running over a
range of momentum transfers of 50-400 GeV.Comment: 10 pages, 3 figures, 3 tables; v2 as published in Phys. Lett.
Measurement of the ratio of the +-jet cross section to the inclusive +jets cross section
We present a measurement of the fraction of inclusive +jets events
produced with net charm quantum number , denoted +-jet, in
collisions at TeV using approximately 1~fb of
data collected by the D0 detector at the Fermilab Tevatron Collider. We
identify the +jets events via the leptonic boson decays. Candidate
+-jet events are selected by requiring a jet containing a muon in
association with a reconstructed boson and exploiting the charge
correlation between this muon and boson decay lepton to perform a nearly
model-independent background subtraction. We measure the fraction of
+-jet events in the inclusive +jets sample for jet GeV and
pseudorapidity to be
0.074(stat.)(syst.), in agreement with
theoretical predictions. The probability that background fluctuations could
produce the observed fraction of +-jet events is estimated to be
, which corresponds to a 3.5 statistical
significance.Comment: submitted to Physics Letters
The performance of the jet trigger for the ATLAS detector during 2011 data taking
The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided protonâproton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleonânucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction
- âŠ