214 research outputs found

    Reducing the rate and duration of Re-ADMISsions among patients with unipolar disorder and bipolar disorder using smartphone-based monitoring and treatment -- the RADMIS trials: study protocol for two randomized controlled trials

    Get PDF
    Abstract Background Unipolar and bipolar disorder combined account for nearly half of all morbidity and mortality due to mental and substance use disorders, and burden society with the highest health care costs of all psychiatric and neurological disorders. Among these, costs due to psychiatric hospitalization are a major burden. Smartphones comprise an innovative and unique platform for the monitoring and treatment of depression and mania. No prior trial has investigated whether the use of a smartphone-based system can prevent re-admission among patients discharged from hospital. The present RADMIS trials aim to investigate whether using a smartphone-based monitoring and treatment system, including an integrated clinical feedback loop, reduces the rate and duration of re-admissions more than standard treatment in unipolar disorder and bipolar disorder. Methods The RADMIS trials use a randomized controlled, single-blind, parallel-group design. Patients with unipolar disorder and patients with bipolar disorder are invited to participate in each trial when discharged from psychiatric hospitals in The Capital Region of Denmark following an affective episode and randomized to either (1) a smartphone-based monitoring system including (a) an integrated feedback loop between patients and clinicians and (b) context-aware cognitive behavioral therapy (CBT) modules (intervention group) or (2) standard treatment (control group) for a 6-month trial period. The trial started in May 2017. The outcomes are (1) number and duration of re-admissions (primary), (2) severity of depressive and manic (only for patients with bipolar disorder) symptoms; psychosocial functioning; number of affective episodes (secondary), and (3) perceived stress, quality of life, self-rated depressive symptoms, self-rated manic symptoms (only for patients with bipolar disorder), recovery, empowerment, adherence to medication, wellbeing, ruminations, worrying, and satisfaction (tertiary). A total of 400 patients (200 patients with unipolar disorder and 200 patients with bipolar disorder) will be included in the RADMIS trials. Discussion If the smartphone-based monitoring system proves effective in reducing the rate and duration of re-admissions, there will be basis for using a system of this kind in the treatment of unipolar and bipolar disorder in general and on a larger scale. Trial registration ClinicalTrials.gov, ID: NCT03033420 . Registered 13 January 2017. Ethical approval has been obtained

    Genotoxicity and mutagenicity of Echinodorus macrophyllus (chapéu-de-couro) extracts

    Get PDF
    Echinodorus macrophyllus, commonly known as chapéu-de-couro, is a medicinal plant used in folk medicine to treat inflammation and rheumatic diseases. In this work, we used short-term bacterial assays based on the induction of SOS functions to examine the genotoxicity and mutagenicity of an aqueous extract of E. macrophyllus leaves. Whole extract and an ethyl acetate fraction showed similar genotoxicity and caused an ~70-fold increase in lysogenic induction. The extract also gave a positive result in the SOS chromotest with an increase of 12-fold in β-Galactosidase enzymatic units. There was a strong trend towards base substitutions and frameshifts at purine sites in the mutations induced by the extract in Escherichia coli (CC103 and CC104 strains) and Salmonella typhimurium test strains (22-fold increase in histidine revertants in TA98 strain). Since reactive oxygen species may be implicated in aging process and in degenerative diseases, we used antioxidant compounds as catalase, thiourea and dipyridyl in the lysogenic induction test. All this compounds were able to reduce the induction factor observed in the treatment with chapéu-de-couro, thus suggesting that the genotoxicity and mutagenicity were attributable to the production of reactive oxygen species that targeted DNA purines

    Seasonal drought limits tree species across the Neotropics

    Get PDF
    AcceptedArticle in Press© 2016 Nordic Society Oikos.Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions predicts a nested pattern of taxa distribution from wet to dry areas. However, this 'dry-tolerance' hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the 'dry tolerance' hypothesis has broad applicability in the world's most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.This paper is a product of the RAINFOR and ATDN networks and of ForestPlots.net researchers (http://www.forestplots.net). RAINFOR and ForestPlots have been supported by a Gordon and Betty Moore Foundation grant, the European Union’s Seventh Framework Programme (283080, ‘GEOCARBON’; 282664, ‘AMAZALERT’); European Research Council (ERC) grant ‘Tropical Forests in the Changing Earth System’ (T-FORCES), and Natural Environment Research Council (NERC) Urgency Grant and NERC Consortium Grants ‘AMAZONICA’ (NE/F005806/1) and ‘TROBIT’ (NE/D005590/1). Additional funding for fieldwork was provided by Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration among Conservation International, the Missouri Botanical Garden, the Smithsonian Institution, and the Wildlife Conservation Society. A.E.M. receives a PhD scholarship from the T-FORCES ERC grant. O.L.P. is supported by an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. We thank Jon J. Lloyd, Chronis Tzedakis, David Galbraith, and two anonymous reviewers for helpful comments and Dylan Young for helping with the analyses. This study would not be possible without the extensive contributions of numerous field assistants and rural communities in the Neotropical forests. Alfredo Alarcón, Patricia Alvarez Loayza, Plínio Barbosa Camargo, Juan Carlos Licona, Alvaro Cogollo, Massiel Corrales Medina, Jose Daniel Soto, Gloria Gutierrez, Nestor Jaramillo Jarama, Laura Jessica Viscarra, Irina Mendoza Polo, Alexander Parada Gutierrez, Guido Pardo, Lourens Poorter, Adriana Prieto, Freddy Ramirez Arevalo, Agustín Rudas, Rebeca Sibler and Javier Silva Espejo additionally contributed data to this study though their RAINFOR participations. We further thank those colleagues no longer with us, Jean Pierre Veillon, Samuel Almeida, Sandra Patiño and Raimundo Saraiva. Many data come from Alwyn Gentry, whose example has inspired new generations to investigate the diversity of the Neotropics

    Big data for bipolar disorder

    Get PDF

    Is ERAS in laparoscopic surgery for colorectal cancer changing risk factors for delayed recovery?

    Get PDF
    There is evidence that implementation of enhanced recovery after surgery (ERAS) protocols into colorectal surgery reduces complication rate and improves postoperative recovery. However, most published papers on ERAS outcomes and length of stay in hospital (LOS) include patients undergoing open resections. The aim of this pilot study was to determine the factors affecting recovery and LOS in patients after laparoscopic colorectal surgery for cancer combined with ERAS protocol. One hundred and forty-three consecutive patients undergoing elective laparoscopic resection were prospectively evaluated. They were divided into two subgroups depending on their reaching the targeted length of stay—LOS (75 patients in group 1—≤4 days, 68 patients in group 2—>4 days). A univariate and multivariate logistic regression analysis was performed to assess for factors (demographics, perioperative parameters, complications and compliance with the ERAS protocol) independently associated with LOS of 4 days or longer. The median LOS in the entire group was 4 days. The postoperative complication rate was higher (18.7 vs. 36.7 %), and the compliance with ERAS protocol was lower (91.2 vs. 76.7 %) in group 2. There was an association between the pre- and postoperative compliance and the subsequent complications. In uni- and multivariate analysis, the lack of balanced fluid therapy (OR 3.87), lack of early mobilization (OR 20.74), prolonged urinary catheterization (OR 4.58) and use of drainage (OR 2.86) were significantly associated with prolonged LOS. Neither traditional patient risk factors nor the stage of the cancer was predictive of the duration of hospital stay. Instead, compliance with the ERAS protocol seems to influence recovery and LOS when applied to laparoscopic colorectal cancer surgery

    Risk to human health related to the presence of perfluoroalkyl substances in food

    Get PDF
    Acknowledgements: The Panel wishes to thank the following for their support provided to this scientific output as Hearing experts: Klaus Abraham, Esben Budtz-Jørgensen, Tony Fletcher, Philippe Grandjean, Hans Mielke and Hans Rumke and EFSA staff members: Davide Arcella, Marco Binaglia, Petra Gergelova, Elena Rovesti and Marijke Schutte. The Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output. The Panel would also like to thank the following authors and co-authors for providing additional information in relation to their respective studies: Berit Granum, Margie M Peden-Adams, Thomas Webster.Peer reviewedPublisher PD

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore