117 research outputs found
Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs
BACKGROUND: Osteoarthritis (OA) is a progressive and debilitating disease that often develops from a focal lesion and may take years to clinically manifest to a complete loss of joint structure and function. Currently, there is not a cure for OA, but early diagnosis and initiation of treatment may dramatically improve the prognosis and quality of life for affected individuals. This study was designed to determine the feasibility of analyzing changes in gene expression of articular cartilage using the Pond-Nuki model two weeks after ACL-transection in dogs, and to characterize the changes observed at this time point. METHODS: The ACL of four dogs was completely transected arthroscopically, and the contralateral limb was used as the non-operated control. After two weeks the dogs were euthanatized and tissues harvested from the tibial plateau and femoral condyles of both limbs. Two dogs were used for histologic analysis and Mankin scoring. From the other two dogs the surface of the femoral condyle and tibial plateau were divided into four regions each, and tissues were harvested from each region for biochemical (GAG and HP) and gene expression analysis. Significant changes in gene expression were determined using REST-XL, and Mann-Whitney rank sum test was used to analyze biochemical data. Significance was set at (p < 0.05). RESULTS: Significant differences were not observed between ACL-X and control limbs for Mankin scores or GAG and HP tissue content. Further, damage to the tissue was not observed grossly by India ink staining. However, significant changes in gene expression were observed between ACL-X and control tissues from each region analyzed, and indicate that a unique regional gene expression profile for impending ACL-X induced joint pathology may be identified in future studies. CONCLUSION: The data obtained from this study lend credence to the research approach and model for the characterization of OA, and the identification and validation of future diagnostic modalities. Further, the changes observed in this study may reflect the earliest changes in AC reported during the development of OA, and may signify pathologic changes within a stage of disease that is potentially reversible
The IGNITE (investigation to guide new insight into translational effectiveness) trial: Protocol for a translational study of an evidenced-based wellness program in fire departments
<p>Abstract</p> <p>Background</p> <p>Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research in this report was funded through the American Reinvestment and Recovery Act Challenge Topic 'Pathways for Translational Research,' to define and prioritize determinants that enable and hinder translation of evidenced-based health interventions in well-defined settings.</p> <p>Methods</p> <p>The IGNITE (investigation to guide new insights for translational effectiveness) trial is a prospective cohort study of a worksite wellness and injury reduction program from adoption to final outcomes among 12 fire departments. It will employ a mixed methods strategy to define a translational model. We will assess decision to adopt, installation, use, and outcomes (reach, individual outcomes, and economic effects) using onsite measurements, surveys, focus groups, and key informant interviews. Quantitative data will be used to define the model and conduct mediation analysis of each translational phase. Qualitative data will expand on, challenge, and confirm survey findings and allow a more thorough understanding and convergent validity by overcoming biases in qualitative and quantitative methods used alone.</p> <p>Discussion</p> <p>Findings will inform worksite wellness in fire departments. The resultant prioritized influences and model of effective translation can be validated and manipulated in these and other settings to more efficiently move science to service.</p
Demographics of extra-articular calcaneal fractures: Including a review of the literature on treatment and outcome
Introduction: Extra-articular calcaneal fractures represent 25-40% of all calcaneal fractures and an even higher percentage of up to 60% is seen in children. A disproportionately small part of the literature on calcaneal fractures involves the extra-articular type. The aim of this study was to investigate the incidence of extra-articular calcaneal fractures in a Level 1 trauma centre, define the distribution of the various types of fractures and compare patient demographics between extra- and intra-articular calcaneal fractures. In addition the literature was reviewed for the most common types of extra-articular calcaneal fractures with regard to incidence, treatment and clinical outcome. Methods: The radiological records between 2003 and 2005 were reviewed for intra- and extra-articular calcaneal fractures. Patient gender-distribution and age were compared. A literature search was conducted for the treatment of extra-articular calcaneal fractures. Results: In this 3-year study period a total of 49 patients with 50 extra-articular calcaneal fractures and 91 patients with 101 intra-articular fractures were identified. The median age for the first group was 32.7 years, and for the second group 40.3 years; P = 0.04. Male predominance was significantly less pronounced for extra-articular (63%) compared with intra-articular fractures (79%; P = 0.04). Conclusion: One-third of all calcaneal fractures are extra-articular. Significant differences exist between the intra- and extra-articular groups, in terms of lower age and male-female ratio. The literature study shows inconsistencies in treatment options, but most extra-articular fractures are well manageable conservatively
Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks
Movement of individuals is a critical factor determining the effectiveness of
reserve networks. Marine reserves have historically been used for the management
of species that are sedentary as adults, and, therefore, larval dispersal has
been a major focus of marine-reserve research. The push to use marine reserves
for managing pelagic and demersal species poses significant questions regarding
their utility for highly-mobile species. Here, a simple conceptual
metapopulation model is developed to provide a rigorous comparison of the
functioning of reserve networks for populations with different admixtures of
larval dispersal and adult movement in a home range. We find that adult movement
produces significantly lower persistence than larval dispersal, all other
factors being equal. Furthermore, redistribution of harvest effort previously in
reserves to remaining fished areas (‘fishery squeeze’) and fishing
along reserve borders (‘fishing-the-line’) considerably reduce
persistence and harvests for populations mobile as adults, while they only
marginally changes results for populations with dispersing larvae. Our results
also indicate that adult home-range movement and larval dispersal are not simply
additive processes, but rather that populations possessing both modes of
movement have lower persistence than equivalent populations having the same
amount of ‘total movement’ (sum of larval and adult movement spatial
scales) in either larval dispersal or adult movement alone
Meta-omics approaches to understand and improve wastewater treatment systems
Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the
Spanish Ministry of Education and Science (Contract Project
CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and
the Regional Government of Castilla y Leon (Ref. VA038A07).
Research of AJMS is supported by the European Research
Council (Grant 323009
Spontaneous Breathing in Early Acute Respiratory Distress Syndrome: Insights From the Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE Study
OBJECTIVES: To describe the characteristics and outcomes of patients with acute respiratory distress syndrome with or without spontaneous breathing and to investigate whether the effects of spontaneous breathing on outcome depend on acute respiratory distress syndrome severity. DESIGN: Planned secondary analysis of a prospective, observational, multicentre cohort study. SETTING: International sample of 459 ICUs from 50 countries. PATIENTS: Patients with acute respiratory distress syndrome and at least 2 days of invasive mechanical ventilation and available data for the mode of mechanical ventilation and respiratory rate for the 2 first days. INTERVENTIONS: Analysis of patients with and without spontaneous breathing, defined by the mode of mechanical ventilation and by actual respiratory rate compared with set respiratory rate during the first 48 hours of mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: Spontaneous breathing was present in 67% of patients with mild acute respiratory distress syndrome, 58% of patients with moderate acute respiratory distress syndrome, and 46% of patients with severe acute respiratory distress syndrome. Patients with spontaneous breathing were older and had lower acute respiratory distress syndrome severity, Sequential Organ Failure Assessment scores, ICU and hospital mortality, and were less likely to be diagnosed with acute respiratory distress syndrome by clinicians. In adjusted analysis, spontaneous breathing during the first 2 days was not associated with an effect on ICU or hospital mortality (33% vs 37%; odds ratio, 1.18 [0.92-1.51]; p = 0.19 and 37% vs 41%; odds ratio, 1.18 [0.93-1.50]; p = 0.196, respectively ). Spontaneous breathing was associated with increased ventilator-free days (13 [0-22] vs 8 [0-20]; p = 0.014) and shorter duration of ICU stay (11 [6-20] vs 12 [7-22]; p = 0.04). CONCLUSIONS: Spontaneous breathing is common in patients with acute respiratory distress syndrome during the first 48 hours of mechanical ventilation. Spontaneous breathing is not associated with worse outcomes and may hasten liberation from the ventilator and from ICU. Although these results support the use of spontaneous breathing in patients with acute respiratory distress syndrome independent of acute respiratory distress syndrome severity, the use of controlled ventilation indicates a bias toward use in patients with higher disease severity. In addition, because the lack of reliable data on inspiratory effort in our study, prospective studies incorporating the magnitude of inspiratory effort and adjusting for all potential severity confounders are required
Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database
Background: Diabetes mellitus is a common co-existing disease in the critically ill. Diabetes mellitus may reduce the risk of acute respiratory distress syndrome (ARDS), but data from previous studies are conflicting. The objective of this study was to evaluate associations between pre-existing diabetes mellitus and ARDS in critically ill patients with acute hypoxemic respiratory failure (AHRF). Methods: An ancillary analysis of a global, multi-centre prospective observational study (LUNG SAFE) was undertaken. LUNG SAFE evaluated all patients admitted to an intensive care unit (ICU) over a 4-week period, that required mechanical ventilation and met AHRF criteria. Patients who had their AHRF fully explained by cardiac failure were excluded. Important clinical characteristics were included in a stepwise selection approach (forward and backward selection combined with a significance level of 0.05) to identify a set of independent variables associated with having ARDS at any time, developing ARDS (defined as ARDS occurring after day 2 from meeting AHRF criteria) and with hospital mortality. Furthermore, propensity score analysis was undertaken to account for the differences in baseline characteristics between patients with and without diabetes mellitus, and the association between diabetes mellitus and outcomes of interest was assessed on matched samples. Results: Of the 4107 patients with AHRF included in this study, 3022 (73.6%) patients fulfilled ARDS criteria at admission or developed ARDS during their ICU stay. Diabetes mellitus was a pre-existing co-morbidity in 913 patients (22.2% of patients with AHRF). In multivariable analysis, there was no association between diabetes mellitus and having ARDS (OR 0.93 (0.78-1.11); p = 0.39), developing ARDS late (OR 0.79 (0.54-1.15); p = 0.22), or hospital mortality in patients with ARDS (1.15 (0.93-1.42); p = 0.19). In a matched sample of patients, there was no association between diabetes mellitus and outcomes of interest. Conclusions: In a large, global observational study of patients with AHRF, no association was found between diabetes mellitus and having ARDS, developing ARDS, or outcomes from ARDS. Trial registration: NCT02010073. Registered on 12 December 2013
Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries
Background: To better understand the epidemiology and patterns of tracheostomy practice for patients with acute respiratory distress syndrome (ARDS), we investigated the current usage of tracheostomy in patients with ARDS recruited into the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG-SAFE) study. Methods: This is a secondary analysis of LUNG-SAFE, an international, multicenter, prospective cohort study of patients receiving invasive or noninvasive ventilation in 50 countries spanning 5 continents. The study was carried out over 4 weeks consecutively in the winter of 2014, and 459 ICUs participated. We evaluated the clinical characteristics, management and outcomes of patients that received tracheostomy, in the cohort of patients that developed ARDS on day 1-2 of acute hypoxemic respiratory failure, and in a subsequent propensity-matched cohort. Results: Of the 2377 patients with ARDS that fulfilled the inclusion criteria, 309 (13.0%) underwent tracheostomy during their ICU stay. Patients from high-income European countries (n = 198/1263) more frequently underwent tracheostomy compared to patients from non-European high-income countries (n = 63/649) or patients from middle-income countries (n = 48/465). Only 86/309 (27.8%) underwent tracheostomy on or before day 7, while the median timing of tracheostomy was 14 (Q1-Q3, 7-21) days after onset of ARDS. In the subsample matched by propensity score, ICU and hospital stay were longer in patients with tracheostomy. While patients with tracheostomy had the highest survival probability, there was no difference in 60-day or 90-day mortality in either the patient subgroup that survived for at least 5 days in ICU, or in the propensity-matched subsample. Conclusions: Most patients that receive tracheostomy do so after the first week of critical illness. Tracheostomy may prolong patient survival but does not reduce 60-day or 90-day mortality. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
An Internal Ribosome Entry Site Directs Translation of the 39-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity
[EN] Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 59-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 39-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 59-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 39-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.This research was supported by grants BFU2006-11230 and BFU2009-11699 from the Spanish Ministerio de Ciencia e Innovacion (MICINN) and by grants ACOM/2006/210 and ACOMP/2009/040 (to CH) and GVPRE/2008/121 (to OF-M) from the Generalitat Valenciana. The latter was the recipient of an I3P postdoctoral contract from the Spanish Consejo Superior de Investigaciones Cientificas and an additional contract from MICINN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fernandez Miragall, O.; Hernandez Fort, C. (2011). An Internal Ribosome Entry Site Directs Translation of the 39-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity. PLoS ONE. 6(7):22617-22617. https://doi.org/10.1371/journal.pone.0022617S226172261767Gallie, D. R. (1996). Translational control of cellular and viral mRNAs. Plant Molecular Biology, 32(1-2), 145-158. doi:10.1007/bf00039381Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299(1-2), 1-34. doi:10.1016/s0378-1119(02)01056-9Sachs, A. B., Sarnow, P., & Hentze, M. W. (1997). Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. Cell, 89(6), 831-838. doi:10.1016/s0092-8674(00)80268-8Kozak, M. (1992). Regulation of Translation in Eukaryotic Systems. Annual Review of Cell Biology, 8(1), 197-225. doi:10.1146/annurev.cb.08.110192.001213Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042F�tterer, J., & Hohn, T. (1996). Translation in plants-rules and exceptions. Plant Molecular Biology, 32(1-2), 159-189. doi:10.1007/bf00039382Gale, M., Tan, S.-L., & Katze, M. G. (2000). Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and Molecular Biology Reviews, 64(2), 239-280. doi:10.1128/mmbr.64.2.239-280.2000Kozak, M. (2001). Constraints on reinitiation of translation in mammals. Nucleic Acids Research, 29(24), 5226-5232. doi:10.1093/nar/29.24.5226Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320-325. doi:10.1038/334320a0Mokrejš, M., Mašek, T., Vopálenský, V., Hlubuček, P., Delbos, P., & Pospíšek, M. (2009). IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Research, 38(suppl_1), D131-D136. doi:10.1093/nar/gkp981Basso, J., Dallaire, P., Charest, P. J., Devantier, Y., & Laliberte, J.-F. (1994). Evidence for an Internal Ribosome Entry Site Within the 5’ Non-translated Region of Turnip Mosaic Potyvirus RNA. Journal of General Virology, 75(11), 3157-3165. doi:10.1099/0022-1317-75-11-3157Levis, C., & Astier-Manifacier, S. (1993). The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes, 7(4), 367-379. doi:10.1007/bf01703392Karetnikov, A., & Lehto, K. (2007). The RNA2 5’ leader of Blackcurrant reversion virus mediates efficient in vivo translation through an internal ribosomal entry site mechanism. Journal of General Virology, 88(1), 286-297. doi:10.1099/vir.0.82307-0Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1997). A Tobamovirus Genome That Contains an Internal Ribosome Entry Site Functionalin Vitro. Virology, 232(1), 32-43. doi:10.1006/viro.1997.8525Skulachev, M. V., Ivanov, P. A., Karpova, O. V., Korpela, T., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1999). Internal Initiation of Translation Directed by the 5′-Untranslated Region of the Tobamovirus Subgenomic RNA I2. Virology, 263(1), 139-154. doi:10.1006/viro.1999.9928Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N., & Prufer, D. (2003). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proceedings of the National Academy of Sciences, 100(15), 8939-8944. doi:10.1073/pnas.1332697100Balvay, L., Rifo, R. S., Ricci, E. P., Decimo, D., & Ohlmann, T. (2009). Structural and functional diversity of viral IRESes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(9-10), 542-557. doi:10.1016/j.bbagrm.2009.07.005Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010Rico, P., & Hern�ndez, C. (2004). Complete nucleotide sequence and genome organization of Pelargonium flower break virus. Archives of Virology, 149(3), 641-651. doi:10.1007/s00705-003-0231-5Martinez-Turino, S., & Hernandez, C. (2010). Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus. Journal of General Virology, 91(12), 3075-3084. doi:10.1099/vir.0.023093-0Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001Martinez-Turino, S., & Hernandez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0Rico, P., & Hernández, C. (2009). Characterization of the subgenomic RNAs produced by Pelargonium flower break virus: Identification of two novel RNAs species. Virus Research, 142(1-2), 100-107. doi:10.1016/j.virusres.2009.01.018Koh, D. C.-Y., Wong, S.-M., & Liu, D. X. (2003). Synergism of the 3′-Untranslated Region and an Internal Ribosome Entry Site Differentially Enhances the Translation of a Plant Virus Coat Protein. Journal of Biological Chemistry, 278(23), 20565-20573. doi:10.1074/jbc.m210212200Hellen, C. U. T. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15(13), 1593-1612. doi:10.1101/gad.891101Martínez-Salas, E. (1999). Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 10(5), 458-464. doi:10.1016/s0958-1669(99)00010-5Dobrikova, E., Florez, P., Bradrick, S., & Gromeier, M. (2003). Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3’ nontranslated region. Proceedings of the National Academy of Sciences, 100(25), 15125-15130. doi:10.1073/pnas.2436464100Belsham, G. J. (2009). Divergent picornavirus IRES elements. Virus Research, 139(2), 183-192. doi:10.1016/j.virusres.2008.07.001Fernández-Miragall, O., Quinto, S. L. de, & Martínez-Salas, E. (2009). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 139(2), 172-182. doi:10.1016/j.virusres.2008.07.009Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., Agol, V. I., & Hellen, C. U. T. (2001). Molecular mechanisms of translation initiation in eukaryotes. Proceedings of the National Academy of Sciences, 98(13), 7029-7036. doi:10.1073/pnas.111145798FERNANDEZ-MIRAGALL, O. (2003). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA, 9(11), 1333-1344. doi:10.1261/rna.5950603ROBERTSON, M. E. M., SEAMONS, R. A., & BELSHAM, G. J. (1999). A selection system for functional internal ribosome entry site (IRES) elements: Analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA, 5(9), 1167-1179. doi:10.1017/s1355838299990301Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., … Atabekov, J. G. (2002). Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proceedings of the National Academy of Sciences, 99(8), 5301-5306. doi:10.1073/pnas.082107599Xia, X., & Holcik, M. (2009). Strong Eukaryotic IRESs Have Weak Secondary Structure. PLoS ONE, 4(1), e4136. doi:10.1371/journal.pone.0004136Lu, J., Zhang, J., Wang, X., Jiang, H., Liu, C., & Hu, Y. (2006). In vitro and in vivo identification of structural and sequence elements in the 5’ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. Journal of General Virology, 87(12), 3667-3677. doi:10.1099/vir.0.82090-0Yang, L. J., Hidaka, M., Sonoda, J., Masaki, H., & Uozumi, T. (1997). Mutational Analysis of the Potato Virus Y 5′ Untranslated Region for Alteration in Translational Enhancement in Tobacco Protoplasts. Bioscience, Biotechnology, and Biochemistry, 61(12), 2131-2133. doi:10.1271/bbb.61.2131BERGAMINI, G., PREISS, T., & HENTZE, M. W. (2000). Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA, 6(12), 1781-1790. doi:10.1017/s1355838200001679Bradrick, S. S. (2006). The hepatitis C virus 3’-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Research, 34(4), 1293-1303. doi:10.1093/nar/gkl019Lopez de Quinto, S. (2002). IRES-driven translation is stimulated separately by the FMDV 3’-NCR and poly(A) sequences. Nucleic Acids Research, 30(20), 4398-4405. doi:10.1093/nar/gkf569Song, Y., Friebe, P., Tzima, E., Junemann, C., Bartenschlager, R., & Niepmann, M. (2006). The Hepatitis C Virus RNA 3’-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site. Journal of Virology, 80(23), 11579-11588. doi:10.1128/jvi.00675-06Koh, D. C.-Y., Liu, D. X., & Wong, S.-M. (2002). A Six-Nucleotide Segment within the 3’ Untranslated Region of Hibiscus Chlorotic Ringspot Virus Plays an Essential Role in Translational Enhancement. Journal of Virology, 76(3), 1144-1153. doi:10.1128/jvi.76.3.1144-1153.2002Stupina, V. A., Meskauskas, A., McCormack, J. C., Yingling, Y. G., Shapiro, B. A., Dinman, J. D., & Simon, A. E. (2008). The 3’ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA, 14(11), 2379-2393. doi:10.1261/rna.1227808Truniger, V., Nieto, C., González-Ibeas, D., & Aranda, M. (2008). Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlledin cisby an (a)virulence determinant. The Plant Journal, 56(5), 716-727. doi:10.1111/j.1365-313x.2008.03630.xMiller, W. A., Wang, Z., & Treder, K. (2007). The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochemical Society Transactions, 35(6), 1629-1633. doi:10.1042/bst0351629Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353Koh, D. C.-Y., Wang, X., Wong, S.-M., & Liu, D. X. (2006). Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein. Virus Research, 122(1-2), 35-44. doi:10.1016/j.virusres.2006.06.008Castaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017Fraser, C. S., & Doudna, J. A. (2006). Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Reviews Microbiology, 5(1), 29-38. doi:10.1038/nrmicro1558LÓPEZ-LASTRA, M., RIVAS, A., & BARRÍA, M. I. (2005). Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation. Biological Research, 38(2-3). doi:10.4067/s0716-97602005000200003Pacheco, A., & Martinez-Salas, E. (2010). Insights into the Biology of IRES Elements through Riboproteomic Approaches. Journal of Biomedicine and Biotechnology, 2010, 1-12. doi:10.1155/2010/458927Bernstein, J., Sella, O., Le, S.-Y., & Elroy-Stein, O. (1997). PDGF2/c-sismRNA Leader Contains a Differentiation-linked Internal Ribosomal Entry Site (D-IRES). Journal of Biological Chemistry, 272(14), 9356-9362. doi:10.1074/jbc.272.14.9356Scheper, G. C., Voorma, H. O., & Thomas, A. A. M. (1994). Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Letters, 352(3), 271-275. doi:10.1016/0014-5793(94)00975-9Dresios, J., Chappell, S. A., Zhou, W., & Mauro, V. P. (2005). An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nature Structural & Molecular Biology, 13(1), 30-34. doi:10.1038/nsmb1031Reigadas, S., Pacheco, A., Ramajo, J., de Quinto, S. L., & Martinez-Salas, E. (2005). Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Letters, 579(30), 6803-6808. doi:10.1016/j.febslet.2005.11.015Ishitani, M., Xiong, L., Stevenson, B., & Zhu, J. K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell, 9(11), 1935-1949. doi:10.1105/tpc.9.11.1935Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., & Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, 95(4), 1933-1937. doi:10.1073/pnas.95.4.1933Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. doi:10.1093/nar/gkg59
- …