246 research outputs found

    Over-representation of specific regions of chromosome 22 in cells from human glioma correlate with resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea

    Get PDF
    BACKGROUND: Glioblastoma multiforme is the most malignant form of brain tumor. Despite treatment including surgical resection, adjuvant chemotherapy, and radiation, these tumors typically recur. The recurrent tumor is often resistant to further therapy with the same agent, suggesting that the surviving cells that repopulate the tumor mass have an intrinsic genetic advantage. We previously demonstrated that cells selected for resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) are near-diploid, with over-representation of part or all of chromosomes 7 and 22. While cells from untreated gliomas often have over-representation of chromosome 7, chromosome 22 is typically under-represented. METHODS: We have analyzed cells from primary and recurrent tumors from the same patient before and after in vitro selection for resistance to clinically relevant doses of BCNU. Karyotypic analyses were done to demonstrate the genetic makeup of these cells, and fluorescent in situ hybridization analyses have defined the region(s) of chromosome 22 retained in these BCNU-resistant cells. RESULTS: Karyotypic analyses demonstrated that cells selected for BCNU resistance were near-diploid with over-representation of chromosomes 7 and 22. In cells where whole copies of chromosome 22 were not identified, numerous fragments of this chromosome were retained and inserted into several marker and derivative chromosomes. Fluorescent in situ hybridization analyses using whole chromosome paints confirmed this finding. Additional FISH analysis using bacterial artificial chromosome probes spanning the length of chromosome 22 have allowed us to map the over-represented region to 22q12.3–13.32. CONCLUSION: Cells selected for BCNU resistance either in vivo or in vitro retain sequences mapped to chromosome 22. The specific over-representation of sequences mapped to 22q12.3–13.32 suggest the presence of a DNA sequence important to BCNU survival and/or resistance located in this region of chromosome 22

    Cohesin Is Dispensable for Centromere Cohesion in Human Cells

    Get PDF
    BACKGROUND: Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS: We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS: These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation

    Staging investigations for oesophageal cancer: a meta-analysis

    Get PDF
    The aim of the study was to compare the diagnostic performance of endoscopic ultrasonography (EUS), computed tomography (CT), and 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in staging of oesophageal cancer. PubMed was searched to identify English-language articles published before January 2006 and reporting on diagnostic performance of EUS, CT, and/or FDG-PET in oesophageal cancer patients. Articles were included if absolute numbers of true-positive, false-negative, false-positive, and true-negative test results were available or derivable for regional, celiac, and abdominal lymph node metastases and/or distant metastases. Sensitivities and specificities were pooled using a random effects model. Summary receiver operating characteristic analysis was performed to study potential effects of study and patient characteristics. Random effects pooled sensitivities of EUS, CT, and FDG-PET for regional lymph node metastases were 0.80 (95% confidence interval 0.75–0.84), 0.50 (0.41–0.60), and 0.57 (0.43–0.70), respectively, and specificities were 0.70 (0.65–0.75), 0.83 (0.77–0.89), and 0.85 (0.76–0.95), respectively. Diagnostic performance did not differ significantly across these tests. For detection of celiac lymph node metastases by EUS, sensitivity and specificity were 0.85 (0.72–0.99) and 0.96 (0.92–1.00), respectively. For abdominal lymph node metastases by CT, these values were 0.42 (0.29–0.54) and 0.93 (0.86–1.00), respectively. For distant metastases, sensitivity and specificity were 0.71 (0.62–0.79) and 0.93 (0.89–0.97) for FDG-PET and 0.52 (0.33–0.71) and 0.91 (0.86–0.96) for CT, respectively. Diagnostic performance of FDG-PET for distant metastases was significantly higher than that of CT, which was not significantly affected by study and patient characteristics. The results suggest that EUS, CT, and FDG-PET each play a distinctive role in the detection of metastases in oesophageal cancer patients. For the detection of regional lymph node metastases, EUS is most sensitive, whereas CT and FDG-PET are more specific tests. For the evaluation of distant metastases, FDG-PET has probably a higher sensitivity than CT. Its combined use could however be of clinical value, with FDG-PET detecting possible metastases and CT confirming or excluding their presence and precisely determining the location(s)

    Ethical and legal implications of whole genome and whole exome sequencing in African populations

    Get PDF
    BACKGROUND: Rapid advances in high throughput genomic technologies and next generation sequencing are making medical genomic research more readily accessible and affordable, including the sequencing of patient and control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards sequencing of numerous African samples for biomedical research. DISCUSSION: Funding agencies and journals often require submission of genomic data from research participants to databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues accompanying whole genome and exome research; and where an historical unidirectional flow of samples and data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and proposed. We investigated the following issues: (i) informed consent, including guidelines for performing culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of such concepts to research participants in resource limited settings. SUMMARY: We conclude that, in order to meet the unique requirements of performing next generation sequencing-related research in African populations, novel approaches to the informed consent process are required. This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent adheres to acceptable data protection levels with regard to use and transfer of such information

    The 100 most cited articles investigating the radiological staging of oesophageal and junctional cancer: a bibliometric analysis

    Get PDF
    Objectives Accurate staging of oesophageal cancer (OC) is vital. Bibliometric analysis highlights key topics and publications that have shaped understanding of a subject. The 100 most cited articles investigating radiological staging of OC are identified. Methods The Thomas Reuters Web of Science database with search terms including “CT, PET, EUS, oesophageal and gastro-oesophageal junction cancer” was used to identify all English language, full-script articles. The 100 most cited articles were further analysed by topic, journal, author, year and institution. Results A total of 5,500 eligible papers were returned. The most cited paper was Flamen et al. (n = 306), investigating the utility of positron emission tomography (PET) for the staging of patients with potentially operable OC. The most common research topic was accuracy of staging investigations (n = 63). The article with the highest citation rate (38.00), defined as the number of citations divided by the number of complete years published, was Tixier et al. investigating PET texture analysis to predict treatment response to neo-adjuvant chemo-radiotherapy, cited 114 times since publication in 2011. Conclusion This bibliometric analysis has identified key publications regarded as important in radiological OC staging. Articles with the highest citation rates all investigated PET imaging, suggesting this modality could be the focus of future research

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore