76 research outputs found

    On the problem of supersonic gas flow in two-dimensional channel with the oscillating upper wall

    Get PDF
    In the present paper we solve the problem of supersonic gas flow in two-dimensional channel with the moving upper wall making oscillations according to the harmonic law. In order to get a numerical solution for gas dynamics equations we have implemented a difference scheme with space and time approximation of the first order and one with space approximation of the second order. Depending on a type of harmonic law and initial gas inflow conditions, the peculiarities of angle-shock wave propagation in moving curvilinear domains have been investigated. It has been determined that the increase of oscillation amplitude causes the increase of shock wave intensity. It has been shown that under particular oscillation amplitude the moving wall has practically no effect on the flow within the domain

    Genetic overlap between diagnostic subtypes of ischemic stroke

    Get PDF
    Background and Purpose: Despite moderate heritability, the phenotypic heterogeneity of ischemic stroke has hampered gene discovery, motivating analyses of diagnostic subtypes with reduced sample sizes. We assessed evidence for a shared genetic basis among the 3 major subtypes: large artery atherosclerosis (LAA), cardioembolism, and small vessel disease (SVD), to inform potential cross-subtype analyses. Methods: Analyses used genome-wide summary data for 12 389 ischemic stroke cases (including 2167 LAA, 2405 cardioembolism, and 1854 SVD) and 62 004 controls from the Metastroke consortium. For 4561 cases and 7094 controls, individual-level genotype data were also available. Genetic correlations between subtypes were estimated using linear mixed models and polygenic profile scores. Meta-analysis of a combined LAA-SVD phenotype (4021 cases and 51 976 controls) was performed to identify shared risk alleles. Results: High genetic correlation was identified between LAA and SVD using linear mixed models (rg=0.96, SE=0.47, P=9×10-4) and profile scores (rg=0.72; 95% confid

    No additional prognostic value of genetic information in the prediction of vascular events after cerebral ischemia of arterial origin

    Get PDF
    Background: Patients who have suffered from cerebral ischemia have a high risk of recurrent vascular events. Predictive models based on classical risk factors typically have limited prognostic value. Given that cerebral ischemia has a heritable component, genetic information might improve performance of these risk models. Our aim was to develop and compare two models: one containing traditional vascular risk factors, the other also including genetic information. Methods and Results: We studied 1020 patients with cerebral ischemia and genotyped them with the Illumina Immunochip. Median follow-up time was 6.5 years; the annual incidence of new ischemic events (primary outcome, n=198) was 3.0%. The prognostic model based on classical vascular risk factors had an area under the receiver operating characteristics curve (AUC-ROC) of 0.65 (95% confidence interval 0.61-0.69). When we added a genetic risk score based on prioritized SNPs from a genome-wide association study of ischemic stroke (using summary statistics from the METASTROKE study which included 12389 cases and 62004 controls), the AUC-ROC remained the same. Similar results were found for the secondary outcome ischemic stroke. Conclusions: We found no additional value of genetic information in a prognostic model for the risk of ischemic events in patients with cerebral ischemia of arterial origin. This is consistent with a complex, polygenic architecture, where many genes of weak effect likely act in concert to influence the heritable risk of an individual to develop (recurrent) vascular events. At present, genetic information cannot help clinicians to distinguish patients at high risk for recurrent vascular events

    Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology

    Get PDF
    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology

    Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12

    Get PDF
    Results: In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07-1.13], p 5 7.12 3 10-11) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90-1.17], p 5 0.695).Conclusion: Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.Methods: Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 case

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Assessment of microRNA-related SNP effects in the 3′ untranslated region of the IL22RA2 risk locus in multiple sclerosis

    Get PDF
    Abstract Recent large-scale association studies have identified over 100 MS risk loci. One of these MS risk variants is single-nucleotide polymorphism (SNP) rs17066096, located 14 kb downstream of IL22RA2. IL22RA2 represents a compelling MS candidate gene due to the role of IL-22 in autoimmunity; however, rs17066096 does not map into any known functional element. We assessed whether rs17066096 or a nearby proxy SNP may exert pathogenic effects by affecting microRNA-to-mRNA binding and thus IL22RA2 expression using comprehensive in silico predictions, in vitro reporter assays, and genotyping experiments in 6,722 individuals. In silico screening identified two predicted microRNA binding sites in the 3′UTR of IL22RA2 (for hsa-miR-2278 and hsamiR-411-5p) encompassing a SNP (rs28366) in moderate linkage disequilibrium with rs17066096 (r 2 =0.4). The binding of both microRNAs to the IL22RA2 3′UTR was confirmed in vitro, but their binding affinities were not significantly affected by rs28366. Association analyses revealed significant Electronic supplementary material The online version of this articl

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine

    Get PDF
    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10−8) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies
    corecore