137 research outputs found

    Age determination and growth of leaping mullet, (Liza saliens R.1810) from the Messolonghi Etoliko lagoon (western Greece)

    Get PDF
    This study is the first detailed work on the age and growth of the leaping mullet (Liza saliens, Risso 1810) in the central Mediterranean. During the period 1991-1995 the age and growth of leaping mullet from the Messolonghi -Etoliko lagoon system (western Greek coast) were studied. Age and growth determinations were based upon otolith samples taken from 537 fish. Marginal increment analysis was used to validate age determination. Annulus formation took place around November each year. The back-calculated lengths at age estimated from the otoliths showed no differences between sub-areas of the lagoon system and the recorded limited between-years variability showed no persistent temporal pattern. The maximum age of leaping mullet in the Messolonghi - Etoliko lagoon was 5 years for males and 6 years for females. The von Bertalanffy equation (L‡=32.99±1.25 cm, k=0.258 ±0.017 year-1, t0=-0.47±0.04 year) accurately describes the growth of the total length of leaping grey mullet for all life stages (fry, juveniles and adults). A large spread and length overlap characterized the age groups. The estimated Length-Weight relationships were common for the two sexes (W=0.0079L3.01)

    Comportamiento de asociación al sustrato de las larvas bentónicas de Oblada melanura (Linnaeus, 1758) (Osteichthyes: Sparidae): una aproximación cuantitativa

    Get PDF
    The site-attachment behaviour of O. melanura settlers was examined in an estuarine area of western Greece. The approach that was followed included underwater assignments of shoal identities and continuous recording of specific behavioural traits. Variations between ontogenetic stages with respect to the pattern of residence at the sites were quantified via an index (the residence-persistence index (RPI)) devised for this purpose. Our findings suggest that this species initiates settlement in small shoals that occupy specific sites at the substratum where they reside for various days. This behavioural trait is stage-specific and gradually diminishes as the fish complete metamorphosis, while at the same time they change their social organisation. Such an ontogeny-dependent site-attachment behaviour has not been described before and is markedly different from that described for other members of the Sparidae family.En este trabajo se ha examinado el comportamiento de asociación al substrato de los individuos recién asentados de Oblada melanura en un área estuárica de Grecia occidental. El estudio se hizo en base a la identificación de los bancos y al seguimiento continuo de las características conductuales específicas a lo largo del tiempo. Las variaciones ontogenéticas respecto a la pauta de residencia en los diferentes lugares han sido cuantificadas mediante un índice (índice de residencia-persistencia (RPI) específicamente desarrollado para este fin. Nuestros resultados sugieren que esta especie inicia el asentamiento en pequeños bancos que ocupan lugares específicos del substrato en donde residen varios días. Esta característica conductual es específica del estadio de desarrollo y disminuye gradualmente a medida que los peces acaban su metamorfosis, mientras que, al mismo tiempo, cambian su organización social. Esta conducta de asociación con el lugar de asentamiento, dependiente de la ontogenia, no se había descrito anteriormente y es marcadamente diferente a la que ha sido documentada para otros miembros de la familia Sparidae

    Ovarian allometry and the use of the gonosomatic index: a case study in the Mediterranean sardine, Sardina pilchardus.

    Get PDF
    Abstract The gonosomatic or gonadosomatic index [GSI=(ovary weight/fish weight)·100] has been widely used in fisheries science and experimental reproductive studies as a simple, low-cost measure of reproductive condition. However, its properties have not been fully evaluated, and several pitfalls, such as size-dependence and changes in ovarian allometry, may invalidate its use. In the present study, we examined ovarian allometry and the appropriateness of GSI for assessing ovarian activity in the Mediterranean sardine Sardina pilchardus. The analysis was based on a large sample of histologically scored females collected over an annual cycle in the eastern Mediterranean (Aegean and Ionian Seas). First, we examined GSI dependence on fish size by comparing ovary weight-on-fish weight relationships in different stages of oocyte development. The effects of recent spawning (incidence of postovulatory follicles) and intensity of follicular atresia were also addressed. In a subsequent step of the analysis, we applied generalized linear models (GLMs) to analyze the relationship between GSI and histological stage, taking into account the parallel effects of additional factors related to geographical region, month of capture, fish length and energetic reserves (fat stage, hepatosomatic index-HSI). Ovarian growth was isometric in all stages of oocyte development and states of atresia, but altered to positive allometric at the stage of oocyte hydration. Oocyte growth and intensity of atresia significantly affected GSI. Fish length, geographical region, month of capture, fat stage and HSI did not substantially affect GSI, further strengthening the appropriateness of the index for the Mediterranean sardine. Finally, we provide first evidence, based mainly on available (but yet limited) published information for other fish species, that: (1) the pattern of ovarian allometry may not be altered by fecundity variations and (2) the pattern of ovarian allometry may reflect the pattern of oocyte growth (i.e. isometric vs. allometric ovarian growth could reflect group-synchronous vs. -asynchronous oocyte development). Alternatively, the pattern of ovarian allometry could reflect the presence or absence of size dependency in the relative fecundity (eggs per gram of body weight) and/or egg size. The isometric ovarian growth in the Mediterranean sardine could be attributed to the lack of such size-dependent effects

    Improved predictive modelling of coralligenous formations in the Greek Seas incorporating large-scale, presence–absence, hydroacoustic data and oceanographic variables

    Get PDF
    Our understanding of the distribution of coralligenous formations, throughout but mostly on the Eastern Mediterranean seafloor, is still poor and mostly relies on presence-only opportunistic trawling and fishermen reports. Previous efforts to gather this information created relevant geodatabases that led to a first draft predictive spatial distribution of coralligenous formations in the Mediterranean Sea using habitat suitability modelling techniques. In the last few decades, the use of hydroacoustics to map the seafloor for various geotechnical and habitat mapping projects accumulated high amounts of detailed spatial information about these formations, which remains majorly unexploited. Repurposing these datasets towards mapping key habitats is a valuable stepping stone to implementing the EU Habitat Directive. In Greece, a unique volume of seafloor mapping data has been gathered by the Laboratory of Marine Geology and Physical Oceanography, Geology Department, University of Patras. It accounts for more than 33 marine geophysical expeditions during the last three decades, having collected hydroacoustic data for a total seafloor area of 3,197.68 km2. In the present work, this information has been curated, re-evaluated, and archived to create the most complete, until now, atlas of coralligenous formations in the Greek Seas and the only integrating presence–absence data. This atlas has been used to train and validate a predictive distribution model, incorporating environmental variables derived from open data repositories, whose importance has been assessed and discussed. The final output is an improved probability map of coralligenous formation occurrence in the Greek Seas, which shall be the basis for effective spatial planning, gap detection, and design of future mapping and monitoring activities on this priority habitat

    Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.</p> <p>Results</p> <p>Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.</p> <p>Conclusion</p> <p>The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.</p

    The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints

    Get PDF
    Quantifying the scale and importance of individual dispersion between populations and life stages is a key challenge in marine ecology. The common sole (Solea solea), an important commercial flatfish in the North Sea, Atlantic Ocean and the Mediterranean Sea, has a marine pelagic larval stage, a benthic juvenile stage in coastal nurseries (lagoons, estuaries or shallow marine areas) and a benthic adult stage in deeper marine waters on the continental shelf. To date, the ecological connectivity among these life stages has been little assessed in the Mediterranean. Here, such an assessment is provided for the first time for the Gulf of Lions, NW Mediterranean, based on a dataset on otolith microchemistry and stable isotopic composition as indicators of the water masses inhabited by individual fish. Specifically, otolith Ba/Ca and Sr/Ca profiles, and delta C-13 and delta O-18 values of adults collected in four areas of the Gulf of Lions were compared with those of young-of-the-year collected in different coastal nurseries. Results showed that a high proportion of adults (>46%) were influenced by river inputs during their larval stage. Furthermore Sr/Ca ratios and the otolith length at one year of age revealed that most adults (similar to 70%) spent their juvenile stage in nurseries with high salinity, whereas the remainder used brackish environments. In total, data were consistent with the use of six nursery types, three with high salinity (marine areas and two types of highly saline lagoons) and three brackish (coastal areas near river mouths, and two types of brackish environments), all of which contributed to the replenishment of adult populations. These finding implicated panmixia in sole population in the Gulf of Lions and claimed for a habitat integrated management of fisherie

    Movements of marine fish and decapod crustaceans: Process, theory and application

    Get PDF
    Many marine species have a multi-phase ontogeny, with each phase usually associated with a spatially and temporally discrete set of movements. For many fish and decapod crustaceans that live inshore, a tri-phasic life cycle is widespread, involving: (1) the movement of planktonic eggs and larvae to nursery areas; (2) a range of routine shelter and foraging movements that maintain a home range; and (3) spawning migrations away from the home range to close the life cycle. Additional complexity is found in migrations that are not for the purpose of spawning and movements that result in a relocation of the home range of an individual that cannot be defined as an ontogenetic shift. Tracking and tagging studies confirm that life cycle movements occur across a wide range of spatial and temporal scales. This dynamic multi-scale complexity presents a significant problem in selecting appropriate scales for studying highly mobile marine animals. We address this problem by first comprehensively reviewing the movement patterns of fish and decapod crustaceans that use inshore areas and present a synthesis of life cycle strategies, together with five categories of movement. We then examine the scale-related limitations of traditional approaches to studies of animal-environment relationships. We demonstrate that studies of marine animals have rarely been undertaken at scales appropriate to the way animals use their environment and argue that future studies must incorporate animal movement into the design of sampling strategies. A major limitation of many studies is that they have focused on: (1) a single scale for animals that respond to their environment at multiple scales or (2) a single habitat type for animals that use multiple habitat types. We develop a hierarchical conceptual framework that deals with the problem of scale and environmental heterogeneity and we offer a new definition of 'habitat' from an organism-based perspective. To demonstrate that the conceptual framework can be applied, we explore the range of tools that are currently available for both measuring animal movement patterns and for mapping and quantifying marine environments at multiple scales. The application of a hierarchical approach, together with the coordinated integration of spatial technologies offers an unprecedented opportunity for researchers to tackle a range of animal-environment questions for highly mobile marine animals. Without scale-explicit information on animal movements many marine conservation and resource management strategies are less likely to achieve their primary objectives

    The Impact of Tides on the Bay of Biscay Dynamics

    No full text

    Recrutement de la sole (Solea solea, L.) du golfe de Gascogne: influence de l'hydrologie et de l'hydrodynamisme

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 79633 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore