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Improved predictive modelling
of coralligenous formations in
the Greek Seas incorporating
large-scale, presence–absence,
hydroacoustic data and
oceanographic variables

Elias Fakiris1, Xenophon Dimas1, Vasileios Giannakopoulos1,
Maria Geraga1, Constantin Koutsikopoulos2,
George Ferentinos1 and George Papatheodorou1*

1Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of
Patras, Rio Patras, Greece, 2Department of Biology, University of Patras, Rio Patras, Greece
Our understanding of the distribution of coralligenous formations, throughout

but mostly on the Eastern Mediterranean seafloor, is still poor and mostly relies

on presence-only opportunistic trawling and fishermen reports. Previous efforts

to gather this information created relevant geodatabases that led to a first draft

predictive spatial distribution of coralligenous formations in the Mediterranean

Sea using habitat suitability modelling techniques. In the last few decades, the

use of hydroacoustics to map the seafloor for various geotechnical and habitat

mapping projects accumulated high amounts of detailed spatial information

about these formations, which remains majorly unexploited. Repurposing these

datasets towards mapping key habitats is a valuable stepping stone to

implementing the EU Habitat Directive. In Greece, a unique volume of seafloor

mapping data has been gathered by the Laboratory of Marine Geology and

Physical Oceanography, Geology Department, University of Patras. It accounts

for more than 33 marine geophysical expeditions during the last three decades,

having collected hydroacoustic data for a total seafloor area of 3,197.68 km2. In

the present work, this information has been curated, re-evaluated, and archived

to create the most complete, until now, atlas of coralligenous formations in the

Greek Seas and the only integrating presence–absence data. This atlas has been

used to train and validate a predictive distribution model, incorporating

environmental variables derived from open data repositories, whose

importance has been assessed and discussed. The final output is an improved

probability map of coralligenous formation occurrence in the Greek Seas, which

shall be the basis for effective spatial planning, gap detection, and design of future

mapping and monitoring activities on this priority habitat.

KEYWORDS

predictive distribution modelling, habitat mapping, bioconstructions, Mediterranean,
sidescan sonar
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1117919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1117919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1117919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1117919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1117919/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1117919/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1117919&domain=pdf&date_stamp=2023-06-28
mailto:gpapathe@upatras.gr
https://doi.org/10.3389/fmars.2023.1117919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1117919
https://www.frontiersin.org/journals/marine-science


Fakiris et al. 10.3389/fmars.2023.1117919
1 Introduction

Coralligenous and other calcareous bio-concretions are among

the most crucial marine habitats in the Mediterranean Sea

(Ballesteros, 2006). These habitats are critical for the health of the

sea bottom by serving as excellent feeding grounds for many fish

and crustaceans as well as by regulating carbon production (Martin

et al., 2013). While there is sufficient research on species of

coralligenous formations around the Mediterranean (Ballesteros,

2006; Blondel et al., 2006; Bartlett et al., 2009; Bonacorsi et al., 2012;

Giakoumi et al., 2013; Martin et al., 2014; Ingrassia et al., 2019;

Pierdomenico et al., 2021; Romagnoli et al., 2021; De Falco et al.,

2022), only one systematic study (Georgiadis et al., 2009) refers to

the Eastern Mediterranean region. Coralligenous formations are

under heavy stress due to human activities such as fishing,

anchoring, invasion of alien species, and environmental pollution

(Georgiadis et al., 2009; Coll et al., 2012; Giakoumi et al., 2013). The

European Union has taken protection measures over the last four

decades in order to minimize the impact and raise public awareness.

The first action was proclaiming ecosystems as priority habitats

under the European Union's Habitat Directive (92/43/CEE), which

names coralligenous formations as Habitat Type 1170 (Reefs).

Several species of corals were given focused attention in the

Barcelona Convention under the “Protocol concerning Specially

Protected Areas and Biological Diversity in the Mediterranean”.

The latest action taken to protect those habitats was the Marine

Strategy Framework Directive (MFSD) (2008/56/EC). This directive

forces each Member State of the EU to achieve or maintain “Good

Environmental Status” in the marine environment. This must be

performed by mapping and monitoring habitats of significant

importance throughout their marine areas and by establishing

marine protected areas (MPAs). Mapping and monitoring

habitats of significant importance thus emerge as a key process,

allowing sparse information to be extrapolated into a regional

ecosystem basis.

Hydroacoustics provides the only means for large-scale, high-

accuracy habitat mapping in moderate to deep waters, mainly with

multibeam echosounders (MBESs) and side-scan sonar (SSS), being

the most efficient systems (Collier and Brown, 2005; Le Bas and

Huvenne, 2009; Brown et al., 2011; Di Maida et al., 2011; Micallef

et al., 2012; Papatheodorou et al., 2012; Lacharité et al., 2018; Fakiris

et al., 2019; Innangi et al., 2019; Rocha et al., 2020; Marchese et al.,

2020; Prampolini et al., 2021). Those, through swath-type scanning

of the seafloor, can cover vast areas of the bottom in brief times. SSS

is the most traditional seafloor mapping tool, recording backscatter

over a wide range of incident angles to capture high-definition,

large-scale texture components of the seafloor and its habitats.

MBES is used for collecting both bathymetry and acoustic

backscatter data and is becoming the standard tool for habitat

mapping, as recent technological advances enhance data resolution

and multi-frequency capabilities.

While the coralligenous formations of the Greek Seas, especially

those in the Aegean Sea, are considered the most well-formed

assemblages of the Mediterranean Sea (Ballesteros, 2006), they are

also the ones that are the least researched. Even though many

studies in the area that used marine remote sensing and ground-
Frontiers in Marine Science 02
truthing techniques for other purposes (e.g., marine geo-

archaeology and habitat mapping) (Geraga et al., 2017; Fakiris

et al., 2018) refer to these habitats, the only study dedicated to

mapping and investigating them using marine geo-acoustics was by

Georgiadis et al. in 2009. This study took place between six islands

of the Cyclades Plateau mapping an area equal to 184 km2, mainly

using an SSS and a sub-bottom profiler (SBP) while the ground

truthing was performed using both sediment sampling and

remotely operated vehicles (ROVs). Two different types of

formations were recorded: the minute reef and the superficial

layer formations. The minute reefs were the dominant form that

formed clusters of up to 30 reefs (aggregations) with a height

between 0.5 and 2.5 m, found to be developing on both hard and

soft substrates. The superficial layer formations (i.e., maerl and

rhodolith beds), of less than 20 cm in height, were found between 56

and 114 m, with the majority of them (81%) between 70 and 90 m

in depth.

In Giakoumi et al. (2013), the presence of three key habitats—

Posidonia oceanica meadows, marine caves, and coralligenous

formations—was assessed in 100-km2 tiles around the

Mediterranean to evaluate the efficiency of ecoregion or basin-scale

conservation scenarios. The information about the presence of these

habitats in each tile came from a multi-source network of

information including scientific and grey literature, online

databases and national catalogues, unpublished data provided by

scientific officers and researchers, published and unpublished

information provided by diving and caving clubs, scientific and

naturalist fora on the web, and direct personal communications. As

a result, they were the first to present maps of the distribution of

coralligenous formations along the Mediterranean Sea. More

recently, in Sini et al. (2017), the authors made a similar effort to

assess the spatial distribution of different species and habitats of the

Aegean Sea, including coralligenous formations and rhodolith beds,

towards establishing conservation and protection measures. The

information regarding the spatial distribution of these two habitats

also came from a variety of sources ranging from published literature

and unpublished technical reports to scuba diving expeditions and

ROV-targeted dives. To quantify the data quality, the authors

established a system of scores, based on which the rhodolith beds

and the coralligenous formation data were found to be reliable in

terms of coverage in each surveyed area but of low spatial and

temporal distribution as well as of low positional accuracy.

Unfortunately, surveys using hydroacoustics or visual census

are time-consuming and costly, making it unrealistic to map in full-

coverage regional scales in reasonable times. To overcome this

limitation and estimate the possibility of a habitat being present in

vast areas, several habitat probability (or else habitat suitability)

spatial models were developed (e.g., Guisan and Zimmermann,

2000; Franklin and Miller, 2010; Pearman et al., 2020). These

models are making use of machine learning techniques to predict

the spatial extents of the observed habitats based on environmental

variables (e.g., water temperature, depth, slope, salinity, water

circulation, nutrient concentration, and seabed type). Many

environmental variables can be measured through remote sensing

or modelled through mathematical simulations on large

geographical scales, so they form the underlying predictors for
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extrapolating known habitats in space (Davies et al., 2008; Tittensor

et al., 2009; Davies and Guinotte, 2011; Tyberghein et al., 2012).

More recently, predictive modelling has been used for local-scale

assessment of habitat and species distribution in submarine

canyons in the Mediterranean and British waters (Bargain et al.,

2018; Pearman et al., 2020) as well as in high-energy tidal regime in

Wales, UK (Jackson-Bué et al., 2022). The above works

incorporated in situ observations solely from video sampling

(through drop camera or scuba diving) and environmental

variables acquired from and including hydrodynamic (tidal or

wind bottom currents and shear stresses) and physicochemical

(salinity and temperature) variables, while bathymetries were

from either open data national repositories or hydrographic

cruises. The only, until now, predictive model for the distribution

of coralligenous formations (separating to outcrops and maerl

beds), in the Mediterranean Sea, has been developed in the

context of the MEDIMESH project, presented in Martin et al.

(2014). The model was trained by presence-only (occurrence)

data available through various opportunistic and published or

unpublished sources from a total of 17 countries. The phosphate

and silicate concentration, sea surface currents, bathymetry, slope,

bottom salinity, and euphotic depth were used as input

environmental variables in the models. The most important

environmental variables, guiding the probability modelling

process, were found to be bathymetry, slope, nutrient input, and

phosphate concentration.

The main drawback of ecoregional-scale mappings or spatial

distribution models of coralligenous formations that include the

Greek Seas (Giakoumi et al., 2013; Martin et al., 2014; Sini et al.,

2017) is that they use presence-only data, meaning observations of

spot coralligenous occurrences regardless of whether these

observations belong to an extensive aggregation of such

formations, or they are truly spatially isolated. This is due to the

sampling methods, usually based on visual census or opportunistic

(fishermen, scuba, and citizen scientists) reports that offered small

spatial coverage and, in some cases, low positional reliability. In the

present study, it is the first time that an extensive presence/absence

database of coralligenous formations, spread over most parts of the

Greek Seas, is formulated and used for predictive habitat modelling.

Information has been retrieved from the historical archive of the

Laboratory of Marine Geology and Physical Oceanography

(LMGPO), University of Patras, Greece (http://oceanus-

net.upatras.gr), including metadata and thematic mappings from

more than 33 expeditions during the last three decades, covering a

total seafloor area of 3,197.68 km2.
2 Materials and methods

2.1 Training dataset: geo-acoustic habitat
mapping archive

The presence–absence data regarding the coralligenous

formations in the Greek Seas were mined by the archive of the

Laboratory of Marine Geology and Physical Oceanography (https://

oceanus-lab.upatras.gr/), Department of Geology, University of
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Patras, Greece. The data were derived from 33 marine geophysical

expeditions and cover areas all around the Greek Seas, spanning three

decades of marine geo-acoustic surveying for mostly geology-

oriented, commercial, or research projects, as listed in the

Supplementary Document (S1). Those data can be segmented into

two major categories: analogue (printed records in thermal papers)

that were collected between 1990 and 2007 and digital ones collected

from 2007 and onwards. The leading marine geo-acoustic system

used to acquire the analogue data was a 100-kHz EG&G 272 TD SSS,

while a dual-frequency (100 kHz and 400 kHz) EdgeTech 4200 SSS

was used in the more recent works. Thus, SSS was the main data

source for seafloor characterization, although it was very often

supplemented by 3.5 kHz or Chirp SBP data, ROV, or towed

underwater camera (TUC) and sediment samplings for visual

census and ground truthing. Although SSS and MBES backscatter

data analysis are the most prominent techniques of marine remote

sensing used for the detection of coralligenous formations (Roberts

et al., 2005; Ballesteros, 2006; Collier and Humber, 2007; Cogan et al.,

2009; Le Bas and Huvenne, 2009; Martin et al., 2014; Fakiris et al.,

2019; Sañé et al., 2021), SSS and SBP multi-platform hydroacoustic

investigation has proven to be an efficient method, as described

thoroughly before (Georgiadis et al., 2009; Fakiris et al., 2018; Fakiris

et al., 2019; Dimas et al., 2022).

In cases where historical seafloor mappings already existed in

the archived survey reports, they have thoroughly been re-examined

to apply corrections to any misinterpreted areas. Seafloor biogenic

formations were once unexploited seabed features, often resembling

geological components (i.e., rocky outcrops), and as such, they

might have in some cases been misclassified. Un-processed archived

analogue or digital data were suitably processed and interpreted to

produce thematic maps in common geospatial vector data format

for geographic information system (GIS) (*.shp polygons). While

curation of the digital data was a straightforward process that was

limited to collecting the data into single GIS data groups and

applying, when necessary, geographic projection conversions into

World Geodetic System (WGS) 84, processing of analogue seafloor

maps involved digitization through paper scanning, map stitching,

and georeferencing in an ArcMap environment. The final vector file

of the archived data covered an area of 3,197.68 km2, including

adequate parts of the Ionian and South Aegean Seas and key areas of

the North Aegean Sea, as presented in Figure 1.
2.2 Mapping coralligenous formations:
echo-signatures, typologies,
and assumptions

In Dimas et al. (2022), the guidelines for detecting coralligenous

formations in SSS and SBP are provided in detail, including

characteristic echo-signatures for various coralligenous formations,

such as reefs, banks, maerl, or rhodolith beds, and the same criteria

have been applied in the present study. Even since, Pérès and Picard

(1951) observed that coralligenous banks and reefs are often

surrounded by rhodolith or maerl sedimentary beds and expressed

the opinion that they were developed from the coalescence of the

latter ones. Early research (Got and Laubier, 1968; Laborel, 1987)
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further suggested that considerable in-height buildups grow almost

always upon rocky outcrops. It is also supported by our knowledge

(Georgiadis et al., 2009; Dimas et al., 2022) that transformation from

superficial coralligenous formations, such as maerl or rhodoliths, to

buildups, such as banks or reefs, is strongly connected to local

geological settings, taking place in sub- or out-cropping bedrock

areas, creating a more or less continuous transition from one type to

the other. Figure 2 shows SSS record examples of coralligenous

formations in the Cyclades Plateau, central Aegean Sea, with

various transitions from the reef or “minute reef” (term by

Georgiadis et al., 2009) to maerl or rhodolith bed types. It has been

noted that, in many cases, high buildups are surrounded by a

peripheral transition zone with maerl or rhodolithic composition

and that sometimes these zones connect to form an extended maerl/

rhodolith bed with scattered buildups within, forming various reef

aggregation densities and transition zone intensities. Fakiris (2012)

quantified those aggregations in selected areas in the Cyclades

Plateau, depending on the ratio between reef density, transition

zone intensity, and connectivity using region of interest (ROI)

analysis (Fakiris and Papatheodorou, 2012), and suggested four

main groups of aggregation types (see Figure 2). The first group

refers to dense “minute” reef aggregations without well-developed
Frontiers in Marine Science 04
maerl/rhodolithic transition zones and is found on the coastal slopes

of Cyclades islands in relatively shallow depths (38–55 m). The

second group refers to isolated reefs with high-intensity buffer zone

each, located in the deepest limits of the coralligenous plateau (70–

100 m) laying on a flat seabed. The third group is also present in deep

and flat beds, but it is composed of dense and smaller “minute” reefs

with buffer zones that connect to form a uniform maerl/rhodolithic

bed. The fourth group is found in intermediate depth, slope, and

proximity to the coasts and is characterized by high “minute” reef

densities and un-connected buffer zones. Although most of our data

resemble the echo-signatures of one of the above aggregation type

groups, there were cases where coralligenous banks were the main

detected formation, especially in the Ionian Sea, while in the North

Aegean Sea, there were limited cases of maerl beds (high backscatter

areas validated through visual census) without the presence of any

buildup formation. Given the heterogeneity in the resolution and

quality of the data used in this study (composed of both digital and

analogue sonar records), the ambiguous transitions from one

formation type to another, and the relative sparsity of samplings in

the Greek Seas, it was decided that only two seabed types will be used

in the analysis, namely, the “coralligenous” (presence) and the “non-

coralligenous” (absence) ones (Figure 1). In the case of a
B C

A

FIGURE 1

Map illustrating the “coralligenous” formations existence/absence data coverage in the Greek Seas, as formed by archiving the marine
hydroacoustic-derived thematic mapping of the Laboratory of Marine Geology and Physical Oceanography (LMGPO), Geology Department,
University of Patras, Greece (https://oceanus-lab.upatras.gr/). (A) The water depth probability density function for observations with coralligenous
formations or without (absence) is presented per ecoregion (Ionian, S. Aegean, and N. Aegean Seas). Detailed mapping examples are shown in
panels (B) (Dimas et al., 2022) and (C) (Fakiris and Papatheodorou, 2012).
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coralligenous aggregation, its outer boundary, including any reefs or

superficial maerl or rhodolith areas that seem to be spatially

delimited, was used as a uniform classification thematic vector

layer in the GIS digitization process.

After evaluating and curating the archived mapping data, 6.67%

(211.67 km2) of the mapped seafloor area was found to be covered

by coralligenous formations, independently of which type (reefs,

maerl, and rhodolith beds) they have. To provide the means for

ecoregion-scale analysis, the Greek Seas were partitioned into three

distinct regions, namely, the Ionian, S. Aegean, and N. Aegean Seas,

following Panayotidis et al. (2022), as illustrated in Figure 1.
2.3 Environmental variables:
open-access bathymetry
and modelled environmental variables

Environmental variables were retrieved from open data

repositories and model products. Bathymetry and light

attenuation, the latter including both photosynthetically active

radiation (PAR) on the seafloor and average diffuse attenuation

PAR (KDPAR), were retrieved from the European Marine

Observation and Data Network (EMODnet) bathymetry (https://
Frontiers in Marine Science 05
www.emodnet-bathymetry.eu/) and seabed habitats (https://

emodnet .ec .europa.eu/en/seabed-habitats) EU portals ,

respectively. Physicochemical attributes of the seawater were

retrieved from the Copernicus Marine Services EU data portal,

using the model products of the Sea Physics and the

Biogeochemistry Reanalysis systems. More data regarding light

attenuation and specifically Lee's euphotic depth (Lee et al., 2007),

as estimated through satellite-based remote-sensing, were retrieved

from NASA's OceanColor Web (https://oceancolor.gsfc.nasa.gov/)

(NASA, 2022), part of NASA's Ocean Biology Processing Group

(OBPG), supported within the framework and facilities of the

NASA Ocean Data Processing System (ODPS).

Apart from EMODnet products that have been provided in

ASCII (*.csv) raster format of 100-m pixel sizing, all other datasets

were in NetCDF (*.nc) format with 4-km resolution. Copernicus

Sea Physics and Biogeochemistry Analysis and Forecast Systems’

products regarded depth layers from the surface to 1,400-m water

column depth and monthly averages of three consecutive years

(April 2017–April 2020), finally accounting for 13 variables with 36

monthly time layers and 84 depth layers (3,024 total layers) each.

Those were reprocessed through customized Matlab scripts to keep

only depth cells closest to the seafloor and to estimate the root mean

squared (RMS) value of each variable over the 3 years' monthly data.
FIGURE 2

Side-scan sonar 100-kHz records (left) and visual census (right) examples showing characteristic coralligenous formations in the Greek Seas. Groups
correspond to the four main types of coralligenous aggregations detected in the data, depending on their buildup (reef) density and existence/
intensity of the peripheral transition maerl/rhodolith zones.
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All Copernicus and OceanColor Web data were resampled to 100-

m cell size (i.e., the resolution of EMODnet bathymetry and light

indices) using the nearest neighbour interpolator in QGIS. An up-

sampling of such an order was decided to honour, as much as

possible, the high-resolution mapping archive and achieve more

data points within each coralligenous zone. Examples, indicative of

the mapping resolution used, are shown in Figures 1B, C, where it is

shown that a 4-km sampling resolution would greatly decrease the

spatial fidelity of our mapping dataset, allowing an insignificant

number of samples with coralligenous formations to be included in

the training dataset.

The retrieved bathymetry raster was further processed to extract

a range of topographic indices. The Benthic Terrain Modeler 3.0

toolbox for ArcGIS (Walbridge et al., 2018) was used to derive slope,

broad, and fine-scale bathymetric position index (BPI). BPI

compares the elevation of a cell in a digital elevation model to the

mean elevation of adjacent cells of a defined area. BPI datasets are

produced through a neighbourhood analysis function. Positive BPI

values illustrate the higher elevation of a specified cell compared to

neighbouring cells, while negative values represent lower elevation.

Values close to zero describe flat areas (Weiss, 2001). Thus, BPI is

used to highlight depression and ridge areas. BPI scale factor is

calculated by multiplying the outer circle radius (in cells) by the cell

size resolution (Lundblad et al., 2006). For the present study, two BPI

indices were extracted: a fine one and a broad one. Broad BPI (bBPI)

concentric circles' radii were 25 and 250 with a scale factor was 25

km. For the fine BPI (fBPI), the radii were 5 and 25 with a scale

factor of 2.5 km. Those scales have been chosen upon a trial-and-

error process to capture both fine and large-scale bathymetric

features owing to geology (out/sub-crops, basins, and faults) that

potentially favours the development of coralligenous formations

either directly, by offering suitable substrate, or indirectly, by

controlling local ocean dynamics and water mixing processes.

Caution should be taken for depth inaccuracies concerning the

EMODnet bathymetry products, as deviations of up to ±20 m

were identified in areas where the research team held

bathymetric data.

The final list of the 21 environmental variables initially

considered in this work is presented in Table 1, along with brief

descriptions, data sources, and source resolutions, while the

predictors’ distribution maps are provided in Supplementary

Data (S2).
2.4 Training data preparation and selection
of environmental variables

The thematic map containing the binary classes, i.e.,

“coralligenous” and “non-coralligenous” formations, areal

information was converted to a 100 × 100 m cell size raster file,

concentred with the environmental variable rasters, which was

chosen as the “working” resolution. This raster was further

converted to a point vector file (point *.shp) containing a total of

296,236 entries. For each point, the raster values of the 21

environmental variables were joined using the point sampling

tool in QGIS along with their x–y coordinates in the metric UTM
Frontiers in Marine Science 06
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binary classification scheme (“coralligenous” and “non-

coralligenous” classes) and the relevant ecoregion (Ionian, S.

Aegean, and N. Aegean Seas) for each data point. The

environmental variable vectors, especially the modelled ones

derived from the Copernicus portal, had important gaps in

shallow or semi-enclosed areas of the Greek Seas due to their

coarse horizontal and vertical resolutions. These gaps coincided

with mapped areas in the archive, namely, the Amvrakikos and

Evoikos Gulfs. Those gaps in spatial coverage were retained, so the

above-mentioned Gulfs, although of high importance due to

presenting coralligenous formations in shallow, turbid waters,

were unable to be included in the predictive modelling and any

other statistical analyses.

Modelling techniques are often sensitive to the multicollinearity

of regarded predictor variables used. The 21 environmental

variables were first tested for value distribution normality and

then for linear correlation using Pearson’s correlation coefficient

in PAST 4.03 statistical software (Hamer et al., 2001). Only PARbed

was found to have a significantly lognormal distribution, so the

logarithmic transformation was applied to it. The correlation matrix

for the environmental variables (correlogram in Figure 3), clearly

suggested 11 mutually un-correlated groups of variables. Each

group was composed of one to six correlated variables (corr.

Coeff > 0.7), and only one variable was selected as a

representative for each group, finally forming a vector of 11

variables (Table 2), from now on called the “predictors”. The data

points, including the 11 predictors along with the assigned binary

bottom classes, constituted the training dataset for the development

of the spatial distribution predictive model.
2.5 Predictive model development

The random forest (RF) classification algorithm was used in this

work for predictive model development. RF has recently been used

for habitat suitability modelling works (Pearman et al., 2020;

Jackson-Bué et al., 2022) exhibiting significant results. It is

preferred against other modelling techniques because it makes no

underlying assumptions of the variables’ distributions, it is robust to

overfitting, it allows for non-linear interactions between the

response and environmental variables (Cutler et al., 2007; Zhang

et al., 2019), and it can handle existence–absence data.

The Waikato Environment for Knowledge Analysis (WEKA

V3.9.6) software, developed by the University of Waikato,

Hamilton, New Zealand, was used for performing RF classification

on the absence–presence data to build the spatial distribution

probability model of the coralligenous formations in the Greek

Seas. RF is an ensemble learning method for classification, which is

based on multiple decision trees, thus the forest, for the final

classification of a sample based on the majority vote. Through this

procedure, the major drawback of overfitting the results based on

training data by a single tree is diminished using multiple trees of

random variables. The major component of its decision tree is its

root, which is the start of the tree and contains the number of

variables used (N) out of the total summary of them (K). The formula
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N = log2 K + 1 is mostly used for the selection of the number of

variances N that each tree will adopt. Each step added to the decision

tree leads through two branches into a leaf or to a new decision

section called the internal branch. The summary of the steps needed

until the final decision is the depth of the tree. The number of trees

used for the creation of a forest is the iterations. One of the most

important features of the RF is the Gini index, which ranks variable

importance based on average impurity decrease. In other words, the

Gini index describes the ability of each variable to divide the data

present in the root or internal branch into two separate sets in order

to advance into the next branch or leaf. All the available data have

been used for training the RF model, while, through trial and error,

the number of trees for each forest was set to 200, and each tree

included any variable with a maximum depth of 10. The performance

of the model was assessed employing both n-fold and spatial block
Frontiers in Marine Science 07
cross-validation (Valavi et al., 2019) principles, as described in

Section 2.6.

After the classifier was built and its validation metrics were

estimated in the Weka explorer environment, the exported

serialized classifier file was applied to the predictors’ vector file of

the entire region of the Greek Seas. This vector file was created by

converting the resampled 100 × 100 m cell size rasters of the

predictors into point vector files and merging them under a

common data table in QGIS. The final classification output

contained the probability distribution for both “coralligenous”

and “non-coralligenous” bottom classes, assigned to the

predictors’ point vector file for the Greek Seas along with each

point’s coordinates. Using a suitably selected distribution threshold,

as discussed in Section 2.6, a final classification map, classifying

points with probabilities of occurrence over the threshold as
TABLE 1 Environmental predictors used in the present study.

Name Description Units Source Res.

Topographic

Depth Depth of the seafloor
Meters
(m)

EMODnet bathymetry

100 m

Slope

Morphometric indices as calculated in GIS for the
present study

Degrees
(°)

fBPI
–

bBPI

Irradiance

PARbed
Photosynthetically active radiation (PAR) on the

seafloor
mol.phot/
m2/day EMODnet Seabed

Habitats
KDPAR

Average diffuse attenuation coefficient of
photosynthetic active radiation (KDPAR)

M−1

Lee’s euphotic
depth (Lee)

Lee’s euphotic depth m OceanColor Web

4 km (RMS value of 3 years
seafloor cell monthly data)

Bottom currents (CurrBott) – cm/s

Copernicus Sea Physics
Reanalysis

Physicochemical

Salinity Water salinity on the seafloor PSU

Temperature Water potential temperature on the seafloor °C

Dis. O2
Mole concentration of dissolved molecular oxygen

(O2) on the seafloor

mmol/m3

Dis. Si Mole concentration of silicate on the seafloor

Copernicus
Biogeochemistry

Reanalysis

Dis.PO4 Mole concentration of phosphate on the seafloor

Dis. NO3 Mole concentration of nitrate on the seafloor

Dis. NH4 Mole concentration of ammonium on the seafloor

Inorganic C
Mole concentration of dissolved inorganic carbon

on the seafloor

Alkalinity
Sea water alkalinity on the seafloor, expressed as

mole equivalent

pH
Sea water pH on the seafloor, reported on total

scale
–

Chlorophyll Mass concentration of chlorophyll a on the seafloor mg/m3

Phytoplankton
Mole concentration of phytoplankton on the
seafloor, expressed as carbon in sea water

mmol/m3

Zooplankton
Mole concentration of zooplankton on the seafloor

expressed as carbon in sea water
mol/m3
Source column indicates the data portals that the data were retrieved from. Res. refers to the native resolution of each retrieved raster dataset.
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“coralligenous”, was created, which was suitable for further

geostatistical compensation and geographic representation.
2.6 Model performance assessment and
probability threshold selection

The output of the spatial predictive model is a raster of

probability distribution values for coralligenous formations’

occurrence. This means that areas with higher distribution values

have higher probabilities of being covered by coralligenous

formations. As mentioned in Section 2.5, the RF model was
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trained on the full mapping dataset to take advantage of the wide

geographic span of our data and to produce predictions that

account for the heterogeneity among different geographic regions.

Model performance was initially assessed through a 10-fold cross

validation, where 10 different RF models were trained, leaving each

time a random 10% of the data out for evaluation. Given that our

model predicts the existence of coralligenous formations in vast

areas, often far away from the training data areas (as shown in

Figure 1), it was really important to take into account spatial

autocorrelation. The “random” split of data in the 10-fold cross

validation infers high spatial autocorrelation in the process, which

might inflate the model performance. This is because of the high

resolution of the mapping data, leading the random data points to

be similar to each other. To test the spatial consistency of the

generated decision rules, the model performance was also evaluated

via spatial block cross validation (see Valavi et al., 2019). According

to this, instead of generating random cross-validation folds,

spatially separated folds (blocks) are created, and the RF model is

trained each time onefold and tested on the others. In our case, the

three ecoregions were used as “blocks”, and the ability of the model

to correctly predict coralligenous occurrences when trained on one

(Ionian Sea, N. Aegean, or S. Aegean Seas) or another was

examined. The accuracy of the above models was evaluated and

compared to each other using the area under the receiver operating

characteristic (ROC) curve (AUC). The ROC curve is a graph

showing the performance of a classification model, expressed as

the ratio between the true-positive rate and false-positive rate, at all

classification (probability distribution) thresholds. The AUC value

is eventually a threshold invariant model evaluation metric that

indicates how well the model fits the test set data, from 0 (model

worse than random predictions) to 1 (ideal model). An AUC = 0.5

indicates random predictions, and an AUC < 0.5 indicates a model

that is worse than when random classes are assigned.

When the probabilistic model needs to be reduced to a binary

classification model, where there are areas “with” or “without”

coralligenous formations, then a probability distribution threshold

(classification threshold) needs to be set and assume that positive

predictions occur when the probability distribution values are

higher than this threshold. An optimized threshold would be able

to respect the initial observations with a reasonable trade-off

between true predictions and misclassifications. Specification of

this threshold is not straightforward, but it can be decided upon

observing the model accuracy change when using different

threshold values. For each threshold value, an error matrix and a

selection of metrics should be considered, which document the

deviation between predicted and observed classes of the test set,

giving an estimate of the model performance. A selection of

standard performance metrics was created from the error matrix.

No single measure can fully describe the performance of a

classification model, and Precision, Recall (or sensitivity), and F-

Measure are estimated. Precision answers the question: “What

proportion of positive identifications was actually correct?” Recall:

“What proportion of actual positives was identified correctly?” F-

Measure is the harmonic mean of Precision and Recall, so it is a

more robust measure of the model’s performance. When these

measures are plotted against the classification threshold values, one
TABLE 2 Groups of correlated environmental variables.

Groups of correlated variables

1 CurrBott

2 Lee, KDPAR

3 log(PARbed)

4 bBPI

5 fBPI

6 Slope

7 Depth, silicate, phosphate, nitrate, O2, temperature, ammonium

8 Chlorophyll, zooplankton, phytoplankton

9 Alkalinity, inorganic C

10 pH

11 Salinity
Groups are mutually uncorrelated, while of the correlated variables within each group, only
one has been chosen (in bold) as predictor for the modelling process.
FIGURE 3

Correlogram between all retrieved environmental variables.
Pearson’s correlation coefficient has been used for the analysis. The
“X” symbols correspond to variables with p > 0.05 for the null
hypothesis that they are uncorrelated.
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can decide on the optimal threshold that keeps Precision and Recall

balanced without sacrificing the overall model’s accuracy, as

quantified through the F-Measure (Esposito et al., 2021). Selecting

a high threshold would make Precision rise, as more and more

predictions would be correct, but Recall would decrease as some

true observations would be neglected. A good threshold is located

where the F-Measure vs. threshold curve has been stabilized close to

its maximum values until Recall starts becoming lower than

Precision. The lowest possible threshold within the above range

has been chosen so as to retain high positive prediction populations.

Predictions with probability densities over this threshold were

considered positive “coralligenous” classification, forming the

final test set, for which evaluation metrics have been reported.

Kappa, the true skill statistic (TSS), overall accuracy (OA), and

specificity evaluation metrics have also been estimated, as suggested

by Zhang et al. (2019).

Finally, it is essential to know how similar the conditions in the

predictions are to those found in the training data, while in areas

where they differ much, predictions should not be considered

trustworthy. An out-of-range check, comparing the training to

the full dataset variable numeric ranges, was made to indicate

areas where at least one predictor is not within the ranges of the

equivalent of the training set.
2.7 Statistical treatment and presentation

Statistical analyses in the context of the present study were

performed for both the observations and the model predictions.

Principal component analysis (PCA) with biplot interpretation was

performed with the PAST statistical software to reveal any

underlying mechanisms that link specific environmental/

oceanographic variables to higher probabilities of “coralligenous”

encounters. Violin plots were also created in the same software to

compare the value distribution of the selected variables between the

areas with or without coralligenous formations and to investigate

any direct classification boundaries that each one offers. The latter

was performed on the predicted “coralligenous” occurrences using

the classification threshold decided through the model

validation process.
3 Results

3.1 Model performance, distribution
thresholding, and final predictions

We prepared one ROC curve for the 10-fold cross-validation

process and another three for when training the model on each

spatial block (i.e., ecoregion) and evaluating the others. Figure 4A

presents the comparison between these ROC curves. All models

exhibited high AUCs (>0.95), except for the one trained on the N.

Aegean ecoregion block (AUC = 0.79), whose performance was

apparently affected by the relatively low quantity of training data

located therein. Nonetheless, the spatial autocorrelation of available

data has been proven high, allowing the model to perform well
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when trained on either the Ionian or S. Aegean block, let alone when

trained on the full dataset (exhibiting AUC = 0.99).

The reported model evaluation metrics in Table 3 correspond to

the classification scheme that occurs when training the model on

the full training dataset and validating it on the full dataset or either

ecoregion after having selected the optimized classification

threshold. As mentioned in Section 2.6, threshold selection was

performed based on Precision, Recall, and F-Measure, plotted

against the threshold, as illustrated in Figure 4B. This plot

suggests an optimized threshold choice between 0.23 and 0.41.

The minimum suggested threshold of 0.23 has eventually been

selected to achieve the maximum population of positive predictions,

retaining a good balance between Precision and Recall and a high F-

Measure. For this threshold, all metrics indicate very good

performance of the model, reaching overall accuracies between

95.89% and 98.81%, kappa values from 71.2% to 85.26%, and low

false-positive rates (0.97%–3.34%), implying that the predictions

meet the great majority of the observed classes, producing

insignificant numbers of false predictions.

The spatial distribution model, showing the occurrence

probabilities of coralligenous formations in the Greek Seas, is

illustrated in Figure 5, in which predictions accounting for the

selected classification threshold (>0.23) are indicated with red

colour, while any areas where at least one predictor is not within

the ranges of the equivalent in the training set are shaded out as of

low reliability. A citable GeoTiff raster image of the model output

has been made available in the figshare (https://figshare.com/) open

data repository (https://doi.org/10.6084/m9.figshare.22276456.v2).
3.2 Environmental variables’ importance

The Gini index coefficient estimated within the RF algorithm

(Figure 6) indicated that Lee’s euphotic depth was the variable

offering the highest information gain to the learning process,

followed by CurrBott and PARbed with values ranging from 0.30

to 0.28. The topographic indices, depth, bBPI, fBPI, and slope

exhibited intermediate index values between 0.26 and 0.24.

Chlorophyll (0.21), pH (0.19), salinity (0.18), and alkalinity (0.17)

offered the least information gain. The above implies that light

radiation, bottom currents, and seabed morphometry seem to be

the main factors controlling the spatial distribution of

coralligenous formations.

In Figure 1, the water depth probability density function for

observations with coralligenous formations is presented per

ecoregion (Ionian, S. Aegean, and N. Aegean Seas), clearly

showing that they have not been detected deeper than 140 m.

The same has been shown through spatial predictive modelling, as

shown in the depth probability densities in Figure 5. To closely

investigate which environmental variables control the spatial

distribution of coralligenous formations, the model predictions

have thus been narrowed to the 0–140-m depth range, and PCA

has been applied to the updated predictors’ vector. A PCA biplot

(Figure 7) has been created using the first two PCs, mixing PC

scores with variables’ loadings in the same PC axes. Minimum

volume ellipsoids enclosing 60% of the PC scores of each bottom
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class were also drawn to visualize the separation between

“coralligenous” and “non-coralligenous” classes and to investigate

which variables they are controlled by.

The environmental variables that have been found, through the

above analyses, to be controlling the most the spatial occurrences of

coralligenous formations were further analysed to detect any

distinct data thresholds separating them from areas without such

formations. For this, the probability density of each “important”

predictor’s values is visually compared between areas with or

without coralligenous formations through violin plots, as

illustrated in Figure 8.
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4 Discussion

4.1 Mapped and predicted spatial patterns
of coralligenous formations in the
Greek Seas

In total, a mapped area of 3,197.68 km2 has been archived, 6.62%

(211.67 km2) of which was covered by coralligenous formations. In

the 20–140 m depth range (1,051 km2), where the coralligenous

formations are exclusively narrowed to, their coverage reaches 16.2%

(169.94 km2). In the Ionian and S. Aegean Seas, the mapped depth

distributions are similar, illustrating a mean depth of 90 m, while in

N. Aegean, the mean depth is approximately 40 m (see Figure 1).

However, the depth distribution of coralligenous formations, as

estimated through the spatial probability modelling, indicates that

there is a common distribution of depths in all ecoregions, with N.

Aegean having a bimodal statistical distribution (Figure 5). The

shallower mode of this corresponds to the northern parts of N.

Aegean, on the coasts of Chalkidiki and Kavala-Thassos, where the

Black Sea water outflow causes significantly different

physicochemical properties in the water column.

The area of Greece with the most extensively mapped areas of

coralligenous formations was the S. Aegean Sea. In a total of

1,455.21 km2 mapped seafloor, 7.82% (113.8 km2) had

coralligenous formations. The Cyclades Plateau is where the most

extensive and well-formed reefs of all Greek sites were found.

Significant formations were also mapped in the Kythira

Elafonisos Strait (southwestern edge of the south Aegean Sea) and

around Leros Island (Dodecanese, S. Aegean Sea). In the Saronic

Gulf, formations were mapped in its central part and its southern

border. The N. Aegean Sea was the least mapped area of the Greek

Seas by LMGPO (524.36 km2 where coralligenous formations were

found in 4.18% (21.93 km2) of the surveyed areas. Coralligenous

formations were also mapped in the Evoikos, Pagasitikos, and

Toroneos Gulfs and Kavala Bay. In the N. Evoikos Gulf, the most

well-formed buildups were mapped. In the Ionian Sea, a total area

of 906.85 km2 was mapped, and coralligenous formations were

found in 75.92 km2 (8.37%). In the northern part of the Ionian Sea,

most of the formations were found north of Corfu Island and

towards the mainland. Major formations were also mapped in the S.

Ionian Sea and outer Patraikos Gulf. Formations were also mapped

in the Amvrakikos Gulf, although it is a semi-enclosed, fjord-like

marine environment. In the Evoikos and Amvrakikos Gulfs, there

was no data coverage regarding the environmental variables, and

thus, no predictive mapping has been performed there.

Model predictions honoured in great precision the observations

and indicated areas where coralligenous formations are likely to

have significant extents (Figure 5). In the Ionian Sea, the model

projected three areas with high probabilities of coralligenous

formations' existence, namely, N. Ionian (Corfu and Paxos

Islands), central Ionian (outer Patraikos Gulf and Zakynthos–

Kefalonia Straits), and SW Peloponnese (Kyparissiakos Gulf to

Pylos). In the S. Aegean Sea, four areas exhibit high coralligenous

formations’ occurrence probabilities, namely, the Cyclades Plateau,
A

B

FIGURE 4

(A) Receiver operating characteristic (ROC) curves corresponding to
the cross-validation results either on a random 10-fold of the
training set or on each ecoregion. (B) Precision, Recall, and F-
Measure vs. decision threshold curves, suggesting an optimized
threshold between 0.23 and 0.41 (0.23 has been selected).
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N. Crete, the Dodecanese Islands, and the Kythira–Crete strait. In

the N. Aegean Sea, Kavala Bay, N. Aegean Islands (Limnos, Lesvos,

and Chios), outer Thermaikos, N. Pagasitikos, and Ierissos Gulfs are

likely to have extensive coralligenous formations.

The spatial patterns of coralligenous formations’ occurrence

probabilities in Greece as estimated in the present work are

generally similar to those in Martin et al. (2013). Some major

deviations though can be detected in Lesvos and Chios (NE

Aegean), between Ikaria and Kos (SE Aegean) and in S. Corfu (N.

Ionian) islands, where more abundant formations are predicted in

the present work, while in E Limnos (N. Aegean), no formations are

predicted herein, as justified also by our field data. The validity of

any of the above models could only be assessed with the acquisition

of more mapping data via targeted samplings.
4.2 Suitability ranges of
environmental variables

The learning process of the RF predictive model involved,

through the Gini index, weighting the importance of each

environmental predictor regarding the degree it aided in

producing correct decisions. As shown in Figure 6, light

irradiance, expressed via the Lee euphotic depth and the seabed

PAR, and hydrodynamics (bottom currents) exhibited top gains in

the classifier’s learning process, followed by all the topographic

indices. The PCA biplot (Figure 7) explaining 57% of the data

variance projected almost all predictors with high loadings in the

PC1 vs. PC2 axes. Lee and salinity vectors were positively correlated

to the PC scores of the coralligenous formations; alkalinity, pH, and

chlorophyll vectors negatively correlated to them, while all

topographic indices were orthogonal (perpendicular) to the

aforementioned ones. The predictive power of the selected

variables is thus proven significant, given that the predictions’

scores exhibited significant separation between “coralligenous”

and “non-coralligenous” classes in the PC1 vs. PC2 space,

especially when combining at least two variables orthogonal to
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each other PC loading, forming well-separated prediction classes in

the Euclidean space.

Regarding light attenuation, the violin plots of Lee and PARbed

in the 0–140 m depth range (Figure 8) indicate that coralligenous

formations are expected where the euphotic depth is high (greater

absorption of light irradiance in the water column) and the PAR on

the seafloor is moderate. This is attributed to the sciaphilic nature of

the coralligenous algae. In this study, coralligenous formations have

been found and predicted in areas where the irradiance reaching the

seafloor (PARbed) was between 0.005% and 3% of the surface one,

which is also supported by Ballesteros (2006). Moreover, the violin

plots indicate that the majority of coralligenous formations are

found where Lee is in a narrow range between 65 and 68 m and the

depth is below −70 m. Lee euphotic depth is derived as the depth in

the water column that PAR is 1% of its surface value; thus, the above

ranges imply that formations are mostly found where PAR is

even lower.

Bottom currents (CurrBott), although not exhibiting high

loadings in the PC1 vs. PC2 biplot (it had greater loadings in

PC4), nor any distinctive range thresholds can be drawn in the

violin plots (Figure 8), have been attributed to one of the highest

importance scores due to the Gini index. The importance of

hydrodynamics in coralligenous formation development has

previously been reported in the literature. Unattached corals, like

maerl and rhodoliths, are subject to mechanical abrasion under

strong currents (Basso et al., 2009). Water movement, to some level,

however, is crucial, as it enables oxygen circulation and keeps their

surface clean (Larkum et al., 2003) while simultaneously protecting

them from poisoning through water stagnation (Basso, 1998;

Nelson et al., 2012). Moreover, as bottom currents are the means

for sediment transport, they are controlling sedimentation rates on

the seafloor. Since coralligenous formations have very slow growth

rates (Ballesteros, 2006; Caragnano et al., 2016), areas where the

sedimentation rate is higher than the growth rate are not suitable for

their development (Basso, 1998; Dethier and Steneck, 2001; Foster,

2001; Riul et al., 2009; Villas-Bôas et al., 2014). Thus, coralligenous

formations build in a specific range of bottom current speeds, as
TABLE 3 Model validation metrics for a classification threshold equal to 0.23, as assessed through the threshold analysis in the context of the model
validation process.

Threshold-dependent validation metrics Overall Ionian S. Aegean N. Aegean

True positives 14,653 5,613 7,781 1,253

False negatives 1,611 154 1,359 104

Overall accuracy 96.81% 97.49% 95.89% 98.81%

True-positive rate (sensitivity/recall) 90.09% 97.33% 85.13% 92.34%

True-negative rate (specificity) 97.28% 97.50% 96.66% 99.03%

True skill statistics (TSS) 87.38% 94.83% 81.79% 91.37%

False-positive rate 2.72% 2.50% 3.34% 0.97%

Kappa 77.09% 85.26% 71.20% 83.09%

Precision 70.00% 78.05% 64.47% 76.54%

F-Measure 78.79% 86.63% 73.37% 83.70%
Metrics are provided on whether the model is validated on the overall test data or each ecoregion.
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they require currents strong enough to mix the seawater but not

that strong as to detach the thalli of the formations from the

seafloor. More closely examining bottom current speed

distribution in the violin plots, no formation has been in areas

with less than 0.5 cm/s water speeds, while few develop in areas with

over 3 cm/s of water speed.

Topographic variables have been given relatively high

importance in the model development, as expressed through the

Gini index, and they also exhibited high PC loadings in the PCA

biplot. Especially slope, bBPI, and fBPI exhibit considerably

different value distributions in areas with coralligenous

formations than in areas without ones (Figure 8), showcasing the

importance of topographic indices for the suitability modelling of

coralligenous formations in the Mediterranean. Buildups seem to

develop in areas with exclusively positive bBPI values, i.e., on large-

scale ridges and mounds, avoiding flat basins and valleys. The same

is supported by fBPI, which exhibits 25th–75th percentiles in the −1
FIGURE 5

Predictive model spatial output presented by ecoregion (Ionian, S. Aegean, and N. Aegean). The colour scale corresponds to the probability
distribution for coralligenous formations, with values over 0.23 classification threshold indicated in red colour. Areas where predictors are out of
range in regard to the training set are overlayed by a linear hatch. Upper right is the water depth probability density function for areas classified as
“coralligenous” per ecoregion.
FIGURE 6

The Gini index weighting the variables’ importance in the RF model.
RF, random forest.
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to 61 range for areas classified as “coralligenous” and −3 to 7 for

“non-coralligenous”, implying that buildups developed on finer-

scale bathymetric ridges and mounds and their lower slopes.

Likewise, coralligenous formations seem to avoid slopes close to 0

and develop on areas with slopes in the range of 1° to 5° and mainly

on mild slopes (mean of 1.5°). The above is in agreement that

coralligenous formations (especially reefs) are known to develop in

sub-cropping or out-cropping areas (Got and Laubier, 1968;

Laborel, 1987; Georgiadis et al., 2009; Dimas et al., 2022), which

inherently form ridges and mounds on the seafloor, including the

coastal slopes where the bedrock is also sub- or out-cropping. This

finding is an addition to the previous knowledge. For instance, in

Georgiadis et al. (2009) and Martin et al. (2013), the Cyclades

Plateau was considered to have high occurrence probabilities of

coralligenous formations throughout its 70–100 m bathymetric

range. This was due to the insufficient presence–absence data

used for drawing assumptions or developing predictive models,

making it difficult to draw the dependency between coralligenous

formations and local seabed morphology. In the present study, the

spatial extents of coralligenous formations in the Cyclades Plateau

are predicted on peripheral to the Plateau large-scale ridges and

upper slopes, exactly validating the plethora of observations that

have been archived in the area.

Both salinity and alkalinity values in areas with coralligenous

formations exhibited very distinctive distributions in the violin plots

of Figure 8. Their loading vectors were also significant in the PCA

biplot (Figure 7), implying a preference for coralligenous

formations to develop in bottoms with high salinity and low

alkalinity. More specifically, the “coralligenous” class shows a
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clear preference for the upper range of the modelled bottom

salinity values, with its 25th–75th percentiles being 39.1–39.2 PSU

out of a total variation in the 0–140 m depth range of the Greek Seas

of 37.8–39.3 PSU. Alkalinity exhibited a clear threshold at 2.72

mmol/m3, with coralligenous formations appearing to occur in the

narrow 2.71–2.72 mmol/m3 range, and without ones almost

exclusively over it.

pH distribution, although obtaining middle-to-low values

(more acidic), is in the narrow range of 8.106–8.116 for seafloors

classified as “coralligenous”, in comparison to the 8.11–8.146 range

for “non-coralligenous. The same occurs for chlorophyll, with

coralligenous formations preferring moderate values, between

0.086 and 0.153 mg/m3 out of the 0.11–0.19 mg/m3 total range in

the 0–140 m depth range. Even though chlorophyll and pH value

distribution did not show any clear separatory thresholds between

areas with and without coralligenous formations, they seem to have

been more important than salinity and alkalinity in the

classification process according to the Gini index (Figure 6), while

they also take high PC loading in the PCA biplot (Figure 7). This is

because the formations mapped on the Thracian coastal areas on

the N end of N. Aegean are directly influenced by the exchanges

with the high pH and chlorophyll Black Sea water masses, so the RF

model ranked them high in an effort to correctly classify them in

space. Finally, although the bottom temperature has not been

selected as a model predictor (being linearly correlated to depth),

it is an important environmental variable, and as such, its

distribution is examined. It exhibits similar median values for

areas with or without coralligenous formations (16.8°C), not

forming any sharp threshold between them. Nevertheless,

coralligenous formations show preference in the narrow range

between 16°C and 17°C (distribution peak), while its main

distribution in the Greek shallow bottoms (depth < 140 m) is

between 15°C and 18°C.
4.3 Coralligenous formation growth rates
and paleogeographic implications

There is a discussion about whether Mediterranean

coralligenous formations in deep waters (>50 m) are still active or

not. As discussed in Ballesteros (2006), the growth rate in

formations found in the NW Mediterranean, at depths between

10 and 60 m, presented a great variety between 0.006 and 0.83 mm/

year, depending on the depth they were found and the geologic

period they were formed. Two growth rates were distinguished: a)

higher growth rate (0.11 to 0.42 mm/year), placed in relatively

shallow areas of 10 to 35 m, and b) low growth rates, reaching 0 in

the 50–60 m depth. The latter corresponds to formations developed

between 8k and 5k years BP, a geologic period when they have

reached their maximum growth rate, estimated at approximately

0.20 to 0.83 mm/year.

Our field data show a maximum coverage of coralligenous

formations between 63 and 110 m depth (mean depth of 90 m).

If we assume a water depth of 35 m for maximum coralligenous

algae growth (Ballesteros, 2006) and based on the global eustatic sea

level curves (Lambeck et al., 2014), then those coralligenous
FIGURE 7

PCA biplot as applied to the model predictions narrowed to the 0–
140-m depth range. Ellipses indicate 70% minimum volume
ellipsoids for areas classified by the RF model (using the 0.23
threshold) as covered with coralligenous formations or not. PC
scores are represented as dots with colours corresponding to
bottom class and green lines to the variables’ loading vectors. PCA,
principal component analysis; RF, random forest; PC, principal
component.
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formations should have been developed approximately 13 and 9 ka

BP. This interval corresponds to a transitional period between the

Last Glacial low sea-level stand and the Holocene high sea-level

stand. Sedimentological studies have shown that in this period, the

seafloor in the studied area started to experience more active bottom

currents, together with the sea level rise (Tripsanas et al., 2015) and

more eutrophicated conditions linked to increases in precipitation,

high levels of marine productivity, and strengthening of water-

column stratification (Rohling et al., 2015).

However, in the Thracian Sea (N end of N. Aegean), in

Amvrakikos Gulf and N Evoikos Gulf, the shallowest

coralligenous formations have been detected in depths of between

20 and 50 m. These areas are characterized by very turbid waters

and shallow euphotic depths, as they are affected by river outflows

and the Black Sea water mass exchanges, or they are semi-enclosed

gulfs with high chlorophyll productions, likely forming suitable

conditions for coralligenous algae (known to be sciaphilic).

Whether these formations are active or not today and, if they are,
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which is the trigger mechanism for their growth, especially in the

deeper waters, are high-priority research topics that have not yet

been studied.
5 Conclusions

Although coralligenous formations are EU-priority habitats and

among the most crucial marine habitats in the Mediterranean Sea,

their spatial distribution is still majorly unknown. Found in wide

geographic extend and depth ranges (10–140 m), great effort and

time are needed by marine researchers to completely map them

using hydroacoustic and visual census systems. In the Greek Seas,

the available data about these formations are sparse and mainly

from in situ presence-only opportunistic observations, having left

great gaps and uncertainties about their true distribution. The

present work amalgamates some of the most broad-scale

hydroacoustic datasets available in Greece and constructs the first
FIGURE 8

Violin/box plots comparing the values distribution of the main predictors for areas classified by the RF model (using the 0.23 threshold) as
“coralligenous” or “non-coralligenous”. RF, random forest.
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presence–absence geodatabase of coralligenous formations in its

Seas. Based on it, a predictive distribution model has been

developed, using as predictors a variety of key environmental

seafloor variables, from depth morphometry derivatives and

hydrodynamics to light irradiance and physicochemical seawater

properties. The adequacy and the substantial geographic

distribution of the presence–absence data fed in the model’s

training process, along with the relevance of the variables used as

predictors, generated a reliable predictive map of their distribution

in the Greek Seas. Through this, commenting on the geographic

distribution of the formations and implications about the suitability

of the predictors for controlling their development were made.

Light irradiance and seafloor currents, as already reported in past

bibliographic resources, were found to be among the most

important environmental variables. Bathymetric indices were also

proven powerful descriptors, with coralligenous formations

showing clear preference in elevated areas, like ridges and

mounds, being totally absent in large-scale depressions, like

valleys and basins, implying a strong relation of their

development to geomorphology. Questions still arise about

whether and to what extent these formations are still building up,

especially in their deeper margins, or whether they are

paleontological remnants. In any case, they are one of the most

important biodiversity hotspots in the Mediterranean, and

endeavours such as the present work are stepping stones for

implementing successful ecological management and spatial

planning activities.
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Ingrassia, M., Martorelli, E., Sañé, E., Falese, F. G., Bosman, A., Bonifazi, A., et al. (2019).
Coralline algae on hard and soft substrata of a temperate mixed siliciclastic-carbonatic
platform: sensitive assemblages in the zannone area (western pontine archipelago; tyrrhenian
Sea). Mar. Environ. Res. 147, 1–12. doi: 10.1016/j.marenvres.2019.03.009

Innangi, S., Tonielli, R., Romagnoli, C., Budillon, F., Di Martino, G., Innangi, M.,
et al. (2019). Seabed mapping in the pelagie islands marine protected area (Sicily
channel, southern Mediterranean) using remote sensing object based image analysis
(RSOBIA). Mar. Geophys. Res. 40, 333–355. doi: 10.1007/s11001-018-9371-6
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