41 research outputs found

    Attitudes toward marriage and divorce in East Asia

    Get PDF
    Attitudes about marriage and divorce, which is related to cultural values and societal norms, are important as they can be indicators of couple relationship quality and marital stability. Along with the rapid social, economic, and cultural changes, East Asians have experienced the major transition of sociocultural interpretations of marriage and divorce. Using a person-oriented approach and the 2006 East Asian Social Survey data set (N = 9,035), this study explored if there were underlying groups of East Asians regarding attitudes toward marriage and divorce. Also, this study examined how those subgroup memberships differed on patriarchy, gender role ideology, age, gender, marital status, education level, and country. Four qualitatively different profiles were identified: conservative (10.8%), progressive (79.6%), married men less happy (3.1%), and married women less happy (6.5%). People in the conservative profile, where South Koreans accounted for 45.8%, were more likely to be older, currently married, and less educated. Individuals in the progressive profile were less likely to have traditional patriarchal and gender role ideology, and about 90% of Chinese and Japanese belonged to this profile. The characteristics of married men less happy and married women less happy group were similar to each other except for the gender ratio and gender role ideology. This study revealed that East Asians have different attitudes toward marriage and family by being categorized into four distinctive groups, which can be implications for policymakers and marriage educators in East Asia.Includes bibliographical reference

    Adaptive path finding algorithm in dynamic environment for warehouse robot

    Get PDF
    Warehouse robots have been widely used by manufacturers and online retailer to automate good delivery process. One of the fundamental components when designing a warehouse robot is path finding algorithm. In the past, many path finding algorithms had been proposed to identify the optimal path and improve the efficiency in different conditions. For example, A* path finding algorithm is developed to obtain the shortest path, while D* obtains a complete coverage path from source to destination. Although these algorithms improved the efficiency in path finding, dynamic obstacle that may exist in warehouse environment was not considered. This paper presents AD* algorithm, a path finding algorithm that works in dynamic environment for warehouse robot. AD* algorithm is able to detect not only static obstacle but also dynamic obstacles while operating in warehouse environment. In dynamic obstacle path prediction, image of the warehouse environment is processed to identify and track obstacles in the path. The image is pre-processed using perspective transformation, dilation and erosion. Once obstacle has been identified using background subtraction, the server will track and predict future path of the dynamic object to avoid the obstacle

    Symptomatic epidural gas cyst treated with epidural block and percutaneous needle aspiration -A case report-

    Get PDF
    A 68-year-old woman suffered from lower back and radiating pain on her right buttock and posterior calf. Axial magnetic resonance imaging showed a 7 × 7 mm nodular lesion (T1 and, T2 low signal intensity) at the epidural space between the L5-S1 level and computed tomography revealed it was an epidural gas cyst. The authors performed an epidural block and percutaneous needle aspiration of the epidural gas cyst. The patient showed almost complete resolution of symptoms one year later. The authors suggest that an epidural nerve block with needle aspiration of a gas cyst could be an alternative treatment option for patients with a symptomatic epidural gas cyst before surgery

    Percutaneous aspiration of lumbar zygapophyseal joint synovial cyst under fluoroscopic guidance -A case report-

    Get PDF
    A 51-year-old man with a 1-month history of lower back pain and radiating pain visited to our pain clinic. A magnetic resonance imaging (MRI) scan demonstrated a cyst like mass at the level of the L4-5 interspace and compression of the thecal sac and the nerve root on the right side. We performed percutaneous needle aspiration of the lumbar zygapophyseal joint synovial cyst under fluoroscopic guidance. The patient felt an immediate relief of symptoms after the aspiration, and had no signs or symptoms of recurrence at the follow-up 6 months later. No demonstrable lesion was found in the 6 months follow-up MRI

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    A Fog Computing Architecture with Multi-Layer for Computing-Intensive IoT Applications

    No full text
    The emergence of new technologies and the era of IoT which will be based on compute-intensive applications. These applications will increase the traffic volume of today’s network infrastructure and will impact more on emerging Fifth Generation (5G) system. Research is going in many details, such as how to provide automation in managing and configuring data analysis tasks over cloud and edges, and to achieve minimum latency and bandwidth consumption with optimizing task allocation. The major challenge for researchers is to push the artificial intelligence to the edge to fully discover the potential of the fog computing paradigm. There are existing intelligence-based fog computing frameworks for IoT based applications, but research on Edge-Artificial Intelligence (Edge-AI) is still in its initial stage. Therefore, we chose to focus on data analytics and offloading in our proposed architecture. To address these problems, we have proposed a prototype of our architecture, which is a multi-layered architecture for data analysis between cloud and fog computing layers to perform latency- sensitive analysis with low latency. The main goal of this research is to use this multi-layer fog computing platform for enhancement of data analysis system based on IoT devices in real-time. Our research based on the policy of the OpenFog Consortium which will offer the good outcomes, but also surveillance and data analysis functionalities. We presented through case studies that our proposed prototype architecture outperformed the cloud-only environment in delay-time, network usage, and energy consumption
    corecore