75 research outputs found

    Hydrogen storage in high surface area graphene scaffolds

    Get PDF
    Using an optimized KOH activation procedure we prepared highly porous graphene scaffoldmaterials with SSA values up to 3400m² g⁻¹ and a pore volume up to 2.2 cm³ gˉ¹, which are among the highest for carbon materials. Hydrogen uptake of activated graphene samples was evaluated in a broad temperature interval (77–296 K). After additional activation by hydrogen annealing the maximal excess H2 uptake of 7.5 wt% was obtained at 77 K. A hydrogen storage value as high as 4 wt% was observed already at 193 K (120 bar H₂), a temperature of solid CO₂, which can be easily maintained using common industrial refrigeration methods

    Taxonomical Study and Diversity of Rotifers in Chikkadevarayana Canal of Cauvery River, Karnataka, India

    Get PDF
    The study was undertaken to assess the diversity and taxonomical observations of rotifers in Chikkadevaraya canal (CDC). The investigation revealed that 27 species belonging to 15 genera and 9 families coming under 3 orders and 2 classes, were observed, photographed and also identified up to species level and are reported for the first time in this region. Among 22 genera of rotifers, the maximum of 11 species belonged to family Brachionidae followed by 5 species from family Lecanidae, 2 species of Euchlanidae, Collurellidae, Notommatidae and Philodinidae respectively. One species each from family Trichocercidae, Testudinellidae and Filinidae. The genus Brachionus, Keratella and Euchlanis was found in all the five sampling points. Euchlanis dialata was abundant while Macrotrachela quadricornifera was found to be least. Species abundance was higher at Gandehosahalli followed by Darsaguppe, Kannalu, Edmuri and lowest in Pandavapura sampling stations. Shannon�s diversity was also found to be highest at Gandehosahalli (2.63) while low in Pandavapura (1.78). The samples of water were used to conduct physico-chemical parameters like temperature, electrical conductivity, pH, dissolved oxygen, total alkalinity, total hardness, chlorides, total solids, total dissolved solids, total suspended solids, sulphate, phosphate and nitrate etc. Statistical interpretations of data were presented based on correlation analysis. The population of rotifes were positively correlated with pH, total alkalinity, hardness and negativly correlated with total suspended solids and total solids of water sample

    A comparison between the structures of reconstituted salivary pellicles and oral mucin (MUC5B) films

    Get PDF
    Hypothesis: Salivary pellicles i.e., thin films formed upon selective adsorption of saliva, protect oral surfaces against chemical and mechanical insults. Pellicles are also excellent aqueous lubricants. It is generally accepted that reconstituted pellicles have a two-layer structure, where the outer layer is mainly composed of MUC5B mucins. We hypothesized that by comparing the effect of ionic strength on reconstituted pellicles and MUC5B films we could gain further insight into the pellicle structure. Experiments: Salivary pellicles and MUC5B films reconstituted on solid surfaces were investigated at different ionic strengths by Force Spectroscopy, Quartz Crystal Microbalance with Dissipation, Null Ellipsometry and Neutron Reflectometry. Findings: Our results support the two-layer structure for reconstituted salivary pellicles. The outer layer swelled when ionic strength decreased, indicating a weak polyelectrolyte behavior. While initially the MUC5B films exhibited a similar tendency, this was followed by a drastic collapse indicating an interaction between exposed hydrophobic domains. This suggests that mucins in the pellicle outer layer form complexes with other salivary components that prevent this interaction. Lowering ionic strength below physiological values also led to a partial removal of the pellicle inner layer. Overall, our results highlight the importance that the interactions of mucins with other pellicle components play on their structure

    Effect of nonionic and amphoteric surfactants on salivary pellicles reconstituted in vitro

    Get PDF
    Surfactants are important components of oral care products. Sodium dodecyl sulfate (SDS) is the most common because of its foaming properties, taste and low cost. However, the use of ionic surfactants, especially SDS, is related to several oral mucosa conditions. Thus, there is a high interest in using non‐ ionic and amphoteric surfactants as they are less irritant. To better understand the performance of these surfactants in oral care products, we investigated their interaction with salivary pellicles i.e., the proteinaceous films that cover surfaces exposed to saliva. Specifically, we focused on pentaethylene glycol monododecyl ether (C12E5) and cocamidopropyl betaine (CAPB) as model nonionic and amphoteric surfactants respectively, and investigated their interaction with reconstituted salivary pellicles with various surface techniques: Quartz Crystal Microbalance with Dissipation, Ellipsometry, Force Spectroscopy and Neutron Reflectometry. Both C12E5 and CAPB were gentler on pellicles than SDS, removing a lower amount. However, their interaction with pellicles differed. Our work indicates that CAPB would mainly interact with the mucin components of pellicles, leading to collapse and dehydration. In contrast, exposure to C12E5 had a minimal effect on the pellicles, mainly resulting in the replacement/solubilisation of some of the components anchoring pellicles to their substrate

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Graphite oxides for preparation of graphene related materials : structure, chemical modification and hydrogen storage properties

    No full text
    Carbon materials have been studied for hydrogen storage for decades, but they showed too low capacity at ambient temperature compared to target values for practical applications. This thesis includes two parts. First one is fundamental study of graphite oxides (GO) structure and properties. Second part is focused on hydrogen storage properties of graphene related materials prepared using GO as a precursor. We studied the effects of synthesis methods and oxidation degree on solvation/intercalation properties of GOs. New effect of temperature induced reversible delamination was observed for Hummers GO (HGO) immersed in liquid acetonitrile. Experiments with swelling of Brodie GO (BGO) in 1-octanol revealed parallel orientation of the intercalated solvent molecules relative to graphene oxide (GnO) layers. Chemical functionalization of GO in swelled state allowed us to synthesize the materials with subnanometer slit pores supported by molecular pillars. Structure and properties of pillared GO were characterized by variety of methods. Swelling properties of multilayered GnO membranes were compared to properties of precursor GO. GnO membranes were found to swell similarly to GO powders in some solvents and rather differently in other. Our experiments revealed important limitations in application of GO membranes for nanofiltration. Several parameters were found to affect the size of permeation “channels” provided by interlayers of GnO membrane structure: e.g. nature of solvent, pH of solutions and concentration of solutes. Hydrogen storage parameters were studied for a set of graphene related materials with broad range of surface areas (SSA) (200 - 3300 m2/g). Hydrogen sorption weight percent (wt%) is found to correlate with SSA for all studied graphene materials following the trend standard for other nanostructured carbon materials. The highest hydrogen uptakes of ~1.2 wt% at 296 K and ~7.5 wt% at 77 K were measured for graphene material with SSA of over 3000 m2/g. Addition of Pd and Pt nanoparticles to graphene materials did not resulted in improvement of hydrogen storage compared to nanoparticles-free samples. No deviation from the standard wt% vs. SSA trends was also observed for pillared GO materials. Therefore, hydrogen storage properties of graphene related materials at room temperatures are not confirmed to be exceptional. However, high surface area graphene materials are found to be among the best materials for physisorption of hydrogen at liquid nitrogen temperature. Moreover, hydrogen storage capacity of 4 wt%, comparable to target values, was observed at temperature of solid CO2 (193 K) which can be maintained using common refrigeration methods

    Graphite oxides for preparation of graphene related materials : structure, chemical modification and hydrogen storage properties

    No full text
    Carbon materials have been studied for hydrogen storage for decades, but they showed too low capacity at ambient temperature compared to target values for practical applications. This thesis includes two parts. First one is fundamental study of graphite oxides (GO) structure and properties. Second part is focused on hydrogen storage properties of graphene related materials prepared using GO as a precursor. We studied the effects of synthesis methods and oxidation degree on solvation/intercalation properties of GOs. New effect of temperature induced reversible delamination was observed for Hummers GO (HGO) immersed in liquid acetonitrile. Experiments with swelling of Brodie GO (BGO) in 1-octanol revealed parallel orientation of the intercalated solvent molecules relative to graphene oxide (GnO) layers. Chemical functionalization of GO in swelled state allowed us to synthesize the materials with subnanometer slit pores supported by molecular pillars. Structure and properties of pillared GO were characterized by variety of methods. Swelling properties of multilayered GnO membranes were compared to properties of precursor GO. GnO membranes were found to swell similarly to GO powders in some solvents and rather differently in other. Our experiments revealed important limitations in application of GO membranes for nanofiltration. Several parameters were found to affect the size of permeation “channels” provided by interlayers of GnO membrane structure: e.g. nature of solvent, pH of solutions and concentration of solutes. Hydrogen storage parameters were studied for a set of graphene related materials with broad range of surface areas (SSA) (200 - 3300 m2/g). Hydrogen sorption weight percent (wt%) is found to correlate with SSA for all studied graphene materials following the trend standard for other nanostructured carbon materials. The highest hydrogen uptakes of ~1.2 wt% at 296 K and ~7.5 wt% at 77 K were measured for graphene material with SSA of over 3000 m2/g. Addition of Pd and Pt nanoparticles to graphene materials did not resulted in improvement of hydrogen storage compared to nanoparticles-free samples. No deviation from the standard wt% vs. SSA trends was also observed for pillared GO materials. Therefore, hydrogen storage properties of graphene related materials at room temperatures are not confirmed to be exceptional. However, high surface area graphene materials are found to be among the best materials for physisorption of hydrogen at liquid nitrogen temperature. Moreover, hydrogen storage capacity of 4 wt%, comparable to target values, was observed at temperature of solid CO2 (193 K) which can be maintained using common refrigeration methods

    Graphite oxides for preparation of graphene related materials : structure, chemical modification and hydrogen storage properties

    No full text
    Carbon materials have been studied for hydrogen storage for decades, but they showed too low capacity at ambient temperature compared to target values for practical applications. This thesis includes two parts. First one is fundamental study of graphite oxides (GO) structure and properties. Second part is focused on hydrogen storage properties of graphene related materials prepared using GO as a precursor. We studied the effects of synthesis methods and oxidation degree on solvation/intercalation properties of GOs. New effect of temperature induced reversible delamination was observed for Hummers GO (HGO) immersed in liquid acetonitrile. Experiments with swelling of Brodie GO (BGO) in 1-octanol revealed parallel orientation of the intercalated solvent molecules relative to graphene oxide (GnO) layers. Chemical functionalization of GO in swelled state allowed us to synthesize the materials with subnanometer slit pores supported by molecular pillars. Structure and properties of pillared GO were characterized by variety of methods. Swelling properties of multilayered GnO membranes were compared to properties of precursor GO. GnO membranes were found to swell similarly to GO powders in some solvents and rather differently in other. Our experiments revealed important limitations in application of GO membranes for nanofiltration. Several parameters were found to affect the size of permeation “channels” provided by interlayers of GnO membrane structure: e.g. nature of solvent, pH of solutions and concentration of solutes. Hydrogen storage parameters were studied for a set of graphene related materials with broad range of surface areas (SSA) (200 - 3300 m2/g). Hydrogen sorption weight percent (wt%) is found to correlate with SSA for all studied graphene materials following the trend standard for other nanostructured carbon materials. The highest hydrogen uptakes of ~1.2 wt% at 296 K and ~7.5 wt% at 77 K were measured for graphene material with SSA of over 3000 m2/g. Addition of Pd and Pt nanoparticles to graphene materials did not resulted in improvement of hydrogen storage compared to nanoparticles-free samples. No deviation from the standard wt% vs. SSA trends was also observed for pillared GO materials. Therefore, hydrogen storage properties of graphene related materials at room temperatures are not confirmed to be exceptional. However, high surface area graphene materials are found to be among the best materials for physisorption of hydrogen at liquid nitrogen temperature. Moreover, hydrogen storage capacity of 4 wt%, comparable to target values, was observed at temperature of solid CO2 (193 K) which can be maintained using common refrigeration methods
    corecore