46 research outputs found

    Success Rate of Split-Thickness Skin Grafting of Chronic Venous Leg Ulcers Depends on the Presence of Pseudomonas aeruginosa: A Retrospective Study

    Get PDF
    The last years of research have proposed that bacteria might be involved in and contribute to the lack of healing of chronic wounds. Especially it seems that Pseudomonas aeruginosa play a crucial role in the healing. At Copenhagen Wound Healing Centre it was for many years clinical suspected that once chronic venous leg ulcers were colonized (weeks or months preoperatively) by P. aeruginosa, the success rate of skin grafting deteriorated despite aggressive treatment. To investigate this, a retrospective study was performed on the clinical outcome of 82 consecutive patients with chronic venous leg ulcers on 91 extremities, from the 1st of March 2005 until the 31st of August 2006. This was achieved by analysing the microbiology, demographic data, smoking and drinking habits, diabetes, renal impairment, co-morbidities, approximated size and age of the wounds, immunosuppressive treatment and complicating factors on the clinical outcome of each patient. The results were evaluated using a Student T-test for continuous parameters, chi-square test for categorical parameters and a logistic regression analysis to predict healing after 12 weeks. The analysis revealed that only 33,3% of ulcers with P. aeruginosa, isolated at least once from 12 weeks prior, to or during surgery, were healed (98% or more) by week 12 follow-up, while 73,1% of ulcers without P. aeruginosa were so by the same time (p = 0,001). Smoking also significantly suppressed the outcome at the 12-week follow-up. Subsequently, a logistic regression analysis was carried out leaving P. aeruginosa as the only predictor left in the model (p = 0,001). This study supports our hypothesis that P. aeruginosa in chronic venous leg ulcers, despite treatment, has considerable impact on partial take or rejection of split-thickness skin grafts

    The detrimental impact of extracellular bacterial proteases on wound healing

    Get PDF
    In addition to clinical signs of infection (e.g. inflammation, purulence and pain), a microbial count of ≥105 colony‐forming units/g has historically been used to define wound infection. However, it is increasingly recognised that, rather than a high bioburden level alone being detrimental to wound healing, it is the virulence of the invading microorganism and the host's immune status that can affect clinical outcomes. Bacteria, such as Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis, have developed a range of virulence factors to help them overcome host defences and proliferate within the underlying soft tissue. More specifically, bacterial proteases are one such virulence factor that has been implicated in promoting the invasion and destruction of the host tissue. Because of the complexities of microorganisms, the proteases can negatively impact the wound environment, leading to delayed wound healing. The aim of the present paper is to describe various extracellular bacterial proteases; review the impact they have on the wound environment, the host immune response and biofilms; and discuss potential wound management strategies against them. The evidence discussed suggests that proteases may play a profound role in wound infections, contribute to the development of an inflammatory response and impede wound healing

    Guidelines on offloading foot ulcers in persons with diabetes (IWGDF 2023 update)

    No full text
    Aims: Offloading mechanical tissue stress is arguably the most important of multiple interventions needed to heal diabetes-related foot ulcers. This is the 2023 International Working Group on the Diabetic Foot (IWGDF) evidence-based guideline on offloading interventions to promote healing of foot ulcers in persons with diabetes. It serves as an update of the 2019 IWGDF guideline. Materials and Methods: We followed the GRADE approach by devising clinical questions and important outcomes in the PICO (Patient-Intervention-Control-Outcome) format, undertaking a systematic review and meta-analyses, developing summary of judgement tables and writing recommendations and rationales for each question. Each recommendation is based on the evidence found in the systematic review, expert opinion where evidence was not available, and a careful weighing of GRADE summary of judgement items including desirable and undesirable effects, certainty of evidence, patient values, resources required, cost effectiveness, equity, feasibility, and acceptability. Results: For healing a neuropathic plantar forefoot or midfoot ulcer in a person with diabetes, use a non-removable knee-high offloading device as the first-choice offloading intervention. If contraindications or patient intolerance to non-removable offloading exist, consider using a removable knee-high or ankle-high offloading device as the second-choice offloading intervention. If no offloading devices are available, consider using appropriately fitting footwear combined with felted foam as the third-choice offloading intervention. If such a non-surgical offloading treatment fails to heal a plantar forefoot ulcer, consider an Achilles tendon lengthening, metatarsal head resection, joint arthroplasty, or metatarsal osteotomy. For healing a neuropathic plantar or apex lesser digit ulcer secondary to flexibile toe deformity, use digital flexor tendon tenotomy. For healing rearfoot, non-plantar or ulcers complicated with infection or ischaemia, further recommendations have been outlined. All recommendations have been summarised in an offloading clinical pathway to help facilitate the implementation of this guideline into clinical practice. Conclusion: These offloading guideline recommendations should help healthcare professionals provide the best care and outcomes for persons with diabetes-related foot ulcers and reduce the person's risk of infection, hospitalisation and amputation

    Effectiveness of offloading interventions for people with diabetes-related foot ulcers: A systematic review and meta-analysis

    No full text
    Background: Offloading treatment is crucial to heal diabetes-related foot ulcers (DFU). This systematic review aimed to assess the effectiveness of offloading interventions for people with DFU. Methods: We searched PubMed, EMBASE, Cochrane databases, and trials registries for all studies relating to offloading interventions in people with DFU to address 14 clinical question comparisons. Outcomes included ulcers healed, plantar pressure, weight-bearing activity, adherence, new lesions, falls, infections, amputations, quality of life, costs, cost-effectiveness, balance, and sustained healing. Included controlled studies were independently assessed for risk of bias and had key data extracted. Meta-analyses were performed when outcome data from studies could be pooled. Evidence statements were developed using the GRADE approach when outcome data existed. Results: From 19,923 studies screened, 194 eligible studies were identified (47 controlled, 147 non-controlled), 35 meta-analyses performed, and 128 evidence statements developed. We found non-removable offloading devices likely increase ulcers healed compared to removable offloading devices (risk ratio [RR] 1.24, 95% CI 1.09–1.41; N = 14, n = 1083), and may increase adherence, cost-effectiveness and decrease infections, but may increase new lesions. Removable knee-high offloading devices may make little difference to ulcers healed compared to removable ankle-high offloading devices (RR 1.00, 0.86–1.16; N = 6, n = 439), but may decrease plantar pressure and adherence. Any offloading device may increase ulcers healed (RR 1.39, 0.89–2.18; N = 5, n = 235) and cost-effectiveness compared to therapeutic footwear and may decrease plantar pressure and infections. Digital flexor tenotomies with offloading devices likely increase ulcers healed (RR 2.43, 1.05–5.59; N = 1, n = 16) and sustained healing compared to devices alone, and may decrease plantar pressure and infections, but may increase new transfer lesions. Achilles tendon lengthening with offloading devices likely increase ulcers healed (RR 1.10, 0.97–1.27; N = 1, n = 64) and sustained healing compared to devices alone, but likely increase new heel ulcers. Conclusions: Non-removable offloading devices are likely superior to all other offloading interventions to heal most plantar DFU. Digital flexor tenotomies and Achilles tendon lengthening in combination with offloading devices are likely superior for some specific plantar DFU locations. Otherwise, any offloading device is probably superior to therapeutic footwear and other non-surgical offloading interventions to heal most plantar DFU. However, all these interventions have low-to-moderate certainty of evidence supporting their outcomes and more high-quality trials are needed to improve our certainty for the effectiveness of most offloading interventions.</p
    corecore