86 research outputs found

    Angle dependent magnetization reversal of thin film magnetic recording media

    Get PDF
    The results of angular measurements of the remanent switching fields for granular longitudinal and perpendicular magnetic recording media are presented and compared to idealized models of magnetic switching. Co alloy longitudinal and perpendicular recording media are found primarily to have a Stoner-Wohlfarth switching character at vibrating sample magnetometer time scales. Since the Stoner-Wohlfarth model does not consider the effects of thermal activation, the angular dependence of the time independent switching field H-swro(theta) was determined from a Sharrock analysis. This approach shows a closer agreement between experimental data and model. For the case of a representative high density longitudinal recording medium, we additionally investigate the switching field distribution

    Checklist of the vascular flora of the Sunda-Sahul Convergence Zone

    Get PDF
    Background The Sunda-Sahul Convergence Zone, defined here as the area comprising Australia, New Guinea, and Southeast Asia (Indonesia to Myanmar), straddles the Sunda and Sahul continental shelves and is one of the most biogeographically famous and important regions in the world. Floristically, it is thought to harbour a large amount of the world's diversity. Despite the importance of the area, a checklist of the flora has never before been published. Here we present the first working checklist of vascular plants for the Sunda-Sahul Convergence Zone. The list was compiled from 24 flora volumes, online databases and unpublished plot data. Taxonomic nomenclature was updated, and each species was coded into nested biogeographic regions. The list includes 60,415 species in 5,135 genera and 363 families of vascular plants. New information This is the first species-level checklist of the region and presents an updated census of the region's floristic biodiversity. The checklist confirms that species richness of the SSCZ is comparable to that of the Neotropics, and highlights areas in need of further documentation and taxonomic work. This checklist provides a novel dataset for studying floristic ecology and evolution in this biogeographically important region of very high global biodiversity

    Stoichiometry-anisotropy connections in epitaxial L1(0) FePt(001) films

    Get PDF
    The order parameters and anisotropy constants of a series of epitaxial L1(0) FePt films with compositions in the range of 45-55 at. % Fe and nominal thicknesses of 50 nm have been characterized. The films were made by cosputtering the elements onto single crystal MgO(001) substrates. The substrates were coated with 1 nm Pt/1 nm Fe bilayer seeds prior to alloy deposition. Both the bilayer seed and the alloy film were deposited at 620 degreesC. Lattice and order parameters were obtained by x-ray diffraction. Film compositions and thicknesses were determined by Rutherford backscattering spectrometry, and room-temperature magnetocrystalline anisotropies were determined with a torque magnetometer. It was found that the order parameter had a maximum for the film composition closest to the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the Fe content increased from below to slightly above the equiatomic composition. These results imply that nonstoichiometric FePt compositions, with a slight excess of Fe, may in fact be preferred for applications that require high anisotropy

    Cosmology from weak lensing peaks and minima with Subaru Hyper Suprime-Cam survey first-year data

    Full text link
    We present cosmological constraints derived from peak counts, minimum counts, and the angular power spectrum of the Subaru Hyper Suprime-Cam first-year (HSC Y1) weak lensing shear catalog. Weak lensing peak and minimum counts contain non-Gaussian information and hence are complementary to the conventional two-point statistics in constraining cosmology. In this work, we forward-model the three summary statistics and their dependence on cosmology, using a suite of NN-body simulations tailored to the HSC Y1 data. We investigate systematic and astrophysical effects including intrinsic alignments, baryon feedback, multiplicative bias, and photometric redshift uncertainties. We mitigate the impact of these systematics by applying cuts on angular scales, smoothing scales, statistic bins, and tomographic redshift bins. By combining peaks, minima, and the power spectrum, assuming a flat-Λ\LambdaCDM model, we obtain S8â‰ĄÏƒ8Ωm/0.3=0.810−0.026+0.022S_{8} \equiv \sigma_8\sqrt{\Omega_m/0.3}= 0.810^{+0.022}_{-0.026}, a 35\% tighter constraint than that obtained from the angular power spectrum alone. Our results are in agreement with other studies using HSC weak lensing shear data, as well as with Planck 2018 cosmology and recent CMB lensing constraints from the Atacama Cosmology Telescope and the South Pole Telescope

    Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation

    Get PDF
    On its own, a single cell cannot exert more than a microscopic influence on its immediate surroundings. However, via strength in numbers and the expression of cooperative phenotypes, such cells can enormously impact their environments. Simple cooperative phenotypes appear to abound in the microbial world, but explaining their evolution is challenging because they are often subject to exploitation by rapidly growing, non-cooperative cell lines. Population spatial structure may be critical for this problem because it influences the extent of interaction between cooperative and non-cooperative individuals. It is difficult for cooperative cells to succeed in competition if they become mixed with non-cooperative cells, which can exploit the public good without themselves paying a cost. However, if cooperative cells are segregated in space and preferentially interact with each other, they may prevail. Here we use a multi-agent computational model to study the origin of spatial structure within growing cell groups. Our simulations reveal that the spatial distribution of genetic lineages within these groups is linked to a small number of physical and biological parameters, including cell growth rate, nutrient availability, and nutrient diffusivity. Realistic changes in these parameters qualitatively alter the emergent structure of cell groups, and thereby determine whether cells with cooperative phenotypes can locally and globally outcompete exploitative cells. We argue that cooperative and exploitative cell lineages will spontaneously segregate in space under a wide range of conditions and, therefore, that cellular cooperation may evolve more readily than naively expected

    Circulating TNF-like protein 1A (TL1A) is elevated early in rheumatoid arthritis and depends on TNF

    Get PDF
    Abstract Background The tumor necrosis factor (TNF) superfamily cytokine TNF-like protein 1A (TL1A) and its receptor DR3 are essential for diverse animal models of autoimmune disease and may be pathogenic in rheumatoid arthritis (RA). However, the relationship of TL1A to disease duration, activity, and response to anti-TNF and other therapies in RA is not clear. Methods We measured soluble TL1A in synovial fluid (SF), serum, or plasma from RA first-degree relatives (FDRs) and in early RA and established disease. We measured the effects of anti-TNF and methotrexate (MTX) therapy on circulating TL1A from multiple independent RA treatment trials. We also determined the ability of a blocking anti-TL1A antibody to inhibit clinical disease and articular bone destruction in the murine collagen-induced arthritis (CIA) model of human RA. Results Soluble TL1A was specifically elevated in the blood and SF of patients with RA compared to patients with other diseases and was elevated early in disease and in at-risk anti-cyclic citrullinated peptide (CCP) (+) first-degree relatives (FDRs). Therapeutic TNF inhibition reduced serum TL1A in both responders and non-responders, whereas TL1A declined following MTX treatment only in responders. In murine CIA, TL1A blockade was clinically efficacious and reduced bone erosions. Conclusions TL1A is specifically elevated in RA from early in the disease course and in at-risk FDRs. The decline in TL1A after TNF blockade suggests that TL1A levels may be a useful biomarker for TNF activity in RA. These results support the further investigation of the relationship between TL1A and TNF and TL1A blockade as a potential therapeutic strategy in RA

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease

    Get PDF
    Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD

    Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations

    Get PDF
    Background Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families
    • 

    corecore