78 research outputs found

    Cognitive and Clinical Predictors of Prefrontal Cortical Thickness Change Following First-Episode of Psychosis

    Get PDF
    The association of neuroanatomical progression with cognitive and clinical deterioration after first-episode of psychosis remains uncertain. This longitudinal study aims to assess whether i)impaired executive functioning and emotional intelligence at first presentation are associated with progressive prefrontal and orbitofrontal cortical thinning ii)negative symptom severity is linked to progressive prefrontal cortical thinning. 1.5T MRI images were acquired at baseline and after 3.5 years for 20 individuals with first-episode psychosis and 18 controls. The longitudinal pipeline of Freesurfer was employed to parcellate prefrontal cortex at two time points. Baseline cognitive performance was compared between diagnostic groups using MANCOVA. Partial correlations investigated relationships between cognition and negative symptoms at baseline and cortical thickness change over time. Patients displayed poorer performance than controls at baseline in working memory, reasoning/problem solving and emotional intelligence. In patients, loss of prefrontal and orbitofrontal thickness over time was predicted by impaired working memory and emotional intelligence respectively at baseline. Moreover, exploratory analyses revealed that the worsening of negative symptoms over time was significantly related to prefrontal cortical thinning. Results indicate that specific cognitive deficits at the onset of psychotic illness are markers of progressive neuroanatomical deficits and that worsening of negative symptoms occurs with prefrontal thickness reduction as the illness progresses

    Progression of neuroanatomical abnormalities after first-episode of psychosis: A 3-year longitudinal sMRI study

    Get PDF
    The location, extent and progression of longitudinal morphometric changes after first-episode of psychosis (FEP) remains unclear. We investigated ventricular and cortico-subcortical regions over a 3-year period in FEP patients compared with healthy controls. High resolution 1.5T T1-weighted MR images were obtained at baseline from 28 FEP patients at presentation and 28 controls, and again after 3-years. The longitudinal FreeSurfer pipeline (v.5.3.0) was used for regional volumetric and cortical reconstruction image analyses. Repeated-measures ANCOVA and vertex-wise linear regression analyses compared progressive changes between groups in subcortical structures and cortical thickness respectively. Compared with controls, patients displayed progressively reduced volume of the caudate [F (1,51)=5.86, p=0.02, Hedges’ g=0.66], putamen [F (1,51)=6.06, p=0.02, g=0.67], thalamus [F (1,51)=6.99, p=0.01, g=0.72] and increased right lateral ventricular volume [F (1, 51)=4.03, p=0.05], and significantly increased rate of cortical thinning [F (1,52)=5.11, p=0.028)] at a mean difference of 0.84% [95% CI (0.10, 1.59)] in the left lateral orbitofrontal region over the 3-year period. In patients, greater reduction in putamen volume over time was associated with lower cumulative antipsychotic medication dose (r=0.49, p=0.01), and increasing lateral ventricular volume over time was associated with worsening negative symptoms (r=0.41, p=0.04) and poorer global functioning (r= −0.41, p=0.04). This study demonstrates localised progressive structural abnormalities in the cortico-striato-thalamo-cortical circuit after the onset of psychosis, with increasing ventricular volume noted as a neuroanatomical marker of poorer clinical and functional outcome

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb−11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group.

    Get PDF
    Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data

    Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programmes

    Get PDF
    The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor
    • 

    corecore